Search Results for author: Simone Formentin

Found 31 papers, 0 papers with code

Meta-learning of data-driven controllers with automatic model reference tuning: theory and experimental case study

no code implementations21 Mar 2024 Riccardo Busetto, Valentina Breschi, Federica Baracchi, Simone Formentin

Data-driven control offers a viable option for control scenarios where constructing a system model is expensive or time-consuming.

Meta-Learning

Sentiment-driven prediction of financial returns: a Bayesian-enhanced FinBERT approach

no code implementations7 Mar 2024 Raffaele Giuseppe Cestari, Simone Formentin

Predicting financial returns accurately poses a significant challenge due to the inherent uncertainty in financial time series data.

feature selection Language Modelling +2

Explainable data-driven modeling via mixture of experts: towards effective blending of grey and black-box models

no code implementations30 Jan 2024 Jessica Leoni, Valentina Breschi, Simone Formentin, Mara Tanelli

Efforts to combine these models often often stumble upon difficulties in finding a balance between accuracy and complexity.

Harnessing Uncertainty for a Separation Principle in Direct Data-Driven Predictive Control

no code implementations22 Dec 2023 Alessandro Chiuso, Marco Fabris, Valentina Breschi, Simone Formentin

Model Predictive Control (MPC) is a powerful method for complex system regulation, but its reliance on an accurate model poses many limitations in real-world applications.

Model Predictive Control valid

Hawkes-based cryptocurrency forecasting via Limit Order Book data

no code implementations21 Dec 2023 Raffaele Giuseppe Cestari, Filippo Barchi, Riccardo Busetto, Daniele Marazzina, Simone Formentin

Accurately forecasting the direction of financial returns poses a formidable challenge, given the inherent unpredictability of financial time series.

Point Processes Time Series

In-context learning of state estimators

no code implementations7 Dec 2023 Riccardo Busetto, Valentina Breschi, Marco Forgione, Dario Piga, Simone Formentin

State estimation has a pivotal role in several applications, including but not limited to advanced control design.

In-Context Learning

Unraveling the Control Engineer's Craft with Neural Networks

no code implementations20 Nov 2023 Braghadeesh Lakshminarayanan, Federico Dettù, Cristian R. Rojas, Simone Formentin

In this paper, we present a sim2real, direct data-driven controller tuning approach, where the digital twin is used to generate input-output data and suitable controllers for several perturbations in its parameters.

Meta-Learning

Split-Boost Neural Networks

no code implementations6 Sep 2023 Raffaele Giuseppe Cestari, Gabriele Maroni, Loris Cannelli, Dario Piga, Simone Formentin

The calibration and training of a neural network is a complex and time-consuming procedure that requires significant computational resources to achieve satisfactory results.

Optimization tools for Twin-in-the-Loop vehicle control design: analysis and yaw-rate tracking case study

no code implementations5 Sep 2023 Federico Dettù, Simone Formentin, Stefano Varisco, Sergio Matteo Savaresi

As the digital twin is assumed to be the best replica available of the real plant, the key issue in TiL-C becomes the tuning of the compensator, which must be performed relying on data only.

Bayesian Optimization

Joint vehicle state and parameters estimation via Twin-in-the-Loop observers

no code implementations4 Sep 2023 Federico Dettù, Simone Formentin, Sergio Matteo Savaresi

Vehicular control systems are required to be both extremely reliable and robust to different environmental conditions, e. g. load or tire-road friction.

Friction

Scenario-based model predictive control of water reservoir systems

no code implementations1 Sep 2023 Raffaele Giuseppe Cestari, Andrea Castelletti, Simone Formentin

The optimal operation of water reservoir systems is a challenging task involving multiple conflicting objectives.

Model Predictive Control

Meta-learning for model-reference data-driven control

no code implementations29 Aug 2023 Riccardo Busetto, Valentina Breschi, Simone Formentin

Assuming that this supplementary information is available, we propose a novel, direct design approach that leverages the data from similar plants, the knowledge of controllers calibrated on them, and the corresponding closed-loop performance to enhance model-reference control design.

Meta-Learning Philosophy

Model predictive control with dynamic move blocking

no code implementations15 Aug 2023 Valentina Breschi, Simone Formentin, Alberto Leva

Model Predictive Control (MPC) has proven to be a powerful tool for the control of systems with constraints.

Blocking Model Predictive Control

META-SMGO-$Δ$: similarity as a prior in black-box optimization

no code implementations30 Apr 2023 Riccardo Busetto, Valentina Breschi, Simone Formentin

When solving global optimization problems in practice, one often ends up repeatedly solving problems that are similar to each others.

Meta-Learning

Uncertainty-aware data-driven predictive control in a stochastic setting

no code implementations18 Nov 2022 Valentina Breschi, Marco Fabris, Simone Formentin, Alessandro Chiuso

Data-Driven Predictive Control (DDPC) has been recently proposed as an effective alternative to traditional Model Predictive Control (MPC), in that the same constrained optimization problem can be addressed without the need to explicitly identify a full model of the plant.

Model Predictive Control

Hourly operation of a regulated lake via Model Predictive Control

no code implementations15 Sep 2022 Raffaele G. Cestari, Andrea Castelletti, Simone Formentin

The optimal operation of regulated lakes is a challenging task involving conflicting objectives, ranging from controlling lake levels to avoid floods and low levels to water supply downstream.

Model Predictive Control valid

The Twin-in-the-Loop approach for vehicle dynamics control

no code implementations6 Sep 2022 Federico Dettù, Simone Formentin, Sergio Matteo Savaresi

In vehicle dynamics control, engineering a suitable regulator is a long and costly process.

Data-driven design of explicit predictive controllers using model-based priors

no code implementations4 Jul 2022 Valentina Breschi, Andrea Sassella, Simone Formentin

In this paper, we propose a data-driven approach to derive explicit predictive control laws, without requiring any intermediate identification step.

Twin-in-the-loop state estimation for vehicle dynamics control: theory and experiments

no code implementations13 Apr 2022 Giorgio Riva, Simone Formentin, Matteo Corno, Sergio M. Savaresi

In vehicle dynamics control, many variables of interest cannot be directly measured, as sensors might be costly, fragile, or even not available.

Bayesian Optimization

Data-driven predictive control in a stochastic setting: a unified framework

no code implementations21 Mar 2022 Valentina Breschi, Alessandro Chiuso, Simone Formentin

Data-driven predictive control (DDPC) has been recently proposed as an effective alternative to traditional model-predictive control (MPC) for its unique features of being time-efficient and unbiased with respect to the oracle solution.

Model Predictive Control

On the design of regularized explicit predictive controllers from input-output data

no code implementations22 Oct 2021 Valentina Breschi, Andrea Sassella, Simone Formentin

The proposed explicit law is build upon a regularized implicit data-driven predictive control problem, so as to guarantee the uniqueness of the explicit predictive controller.

Learning explicit predictive controllers: theory and applications

no code implementations18 Aug 2021 Andrea Sassella, Valentina Breschi, Simone Formentin

In this paper, we deal with data-driven predictive control of linear time-invariant (LTI) systems.

LEMMA

Direct data-driven model-reference control with Lyapunov stability guarantees

no code implementations23 Mar 2021 Valentina Breschi, Claudio De Persis, Simone Formentin, Pietro Tesi

In this work, we introduce a novel data-driven model-reference control design approach for unknown linear systems with fully measurable state.

Learning-based hierarchical control of water reservoir systems

no code implementations24 Dec 2020 Pauline Kergus, Simone Formentin, Matteo Giuliani, Andrea Castelletti

The optimal control of a water reservoir systems represents a challenging problem, due to uncertain hydrologic inputs and the need to adapt to changing environment and varying control objectives.

Virtual Reference Feedback Tuning with data-driven reference model selection

no code implementations L4DC 2020 Valentina Breschi, Simone Formentin

In control applications where finding a model of the plant is the most costly and time consuming task, Virtual Reference Feedback Tuning (VRFT) represents a valid - purely data-driven - alternative for the design of model reference controllers.

Model Selection valid

Direct data-driven control with embedded anti-windup compensation

no code implementations L4DC 2020 Valentina Breschi, Simone Formentin

Input saturation is an ubiquitous nonlinearity in control systems and arises from the fact that all actuators are subject to a maximum power, thereby resulting in a hard limitation on the allowable magnitude of the input effort.

Cannot find the paper you are looking for? You can Submit a new open access paper.