no code implementations • 29 Sep 2021 • Xin Jin, Tianyu He, Xu Shen, Songhua Wu, Tongliang Liu, Xinchao Wang, Jianqiang Huang, Zhibo Chen, Xian-Sheng Hua
In this paper, we propose an embarrassing simple yet highly effective adversarial domain adaptation (ADA) method for effectively training models for alignment.
no code implementations • 28 Sep 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
It is worthwhile to perform the transformation: We prove that the noise rate for the noisy similarity labels is lower than that of the noisy class labels, because similarity labels themselves are robust to noise.
no code implementations • 14 Jun 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
To give an affirmative answer, in this paper, we propose a framework called Class2Simi: it transforms data points with noisy class labels to data pairs with noisy similarity labels, where a similarity label denotes whether a pair shares the class label or not.
no code implementations • 16 Feb 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
We further estimate the transition matrix from only noisy data and build a novel learning system to learn a classifier which can assign noise-free class labels for instances.