no code implementations • 2 Jun 2023 • Virginia Fernandez, Pedro Sanchez, Walter Hugo Lopez Pinaya, Grzegorz Jacenków, Sotirios A. Tsaftaris, Jorge Cardoso
Knowledge distillation in neural networks refers to compressing a large model or dataset into a smaller version of itself.
no code implementations • 14 May 2023 • Raman Dutt, Linus Ericsson, Pedro Sanchez, Sotirios A. Tsaftaris, Timothy Hospedales
We present a comprehensive evaluation of Parameter-Efficient Fine-Tuning (PEFT) techniques for diverse medical image analysis tasks.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
1 code implementation • 19 Jan 2023 • Antanas Kascenas, Pedro Sanchez, Patrick Schrempf, Chaoyang Wang, William Clackett, Shadia S. Mikhael, Jeremy P. Voisey, Keith Goatman, Alexander Weir, Nicolas Pugeault, Sotirios A. Tsaftaris, Alison Q. O'Neil
Denoising methods, for instance classical denoising autoencoders (DAEs) and more recently emerging diffusion models, are a promising approach, however naive application of pixelwise noise leads to poor anomaly detection performance.
no code implementations • 15 Nov 2022 • Anjun Hu, Jean-Pierre R. Falet, Brennan S. Nichyporuk, Changjian Shui, Douglas L. Arnold, Sotirios A. Tsaftaris, Tal Arbel
We propose a hierarchically structured variational inference model for accurately disentangling observable evidence of disease (e. g. brain lesions or atrophy) from subject-specific anatomy in brain MRIs.
no code implementations • 31 Oct 2022 • Brennan Nichyporuk, Jillian Cardinell, Justin Szeto, Raghav Mehta, Jean-Pierre R. Falet, Douglas L. Arnold, Sotirios A. Tsaftaris, Tal Arbel
This is particularly important in the context of medical image segmentation of pathological structures (e. g. lesions), where the annotation process is much more subjective, and affected by a number underlying factors, including the annotation protocol, rater education/experience, and clinical aims, among others.
1 code implementation • 12 Oct 2022 • Pedro Sanchez, Xiao Liu, Alison Q O'Neil, Sotirios A. Tsaftaris
Topological ordering approaches for causal discovery exploit this by performing graph discovery in two steps, first sequentially identifying nodes in reverse order of depth (topological ordering), and secondly pruning the potential relations.
1 code implementation • 6 Aug 2022 • Xiao Liu, Spyridon Thermos, Pedro Sanchez, Alison Q. O'Neil, Sotirios A. Tsaftaris
Maximisation of mutual information is achieved by introducing an auxiliary network and training with a latent regression loss.
1 code implementation • 25 Jul 2022 • Pedro Sanchez, Antanas Kascenas, Xiao Liu, Alison Q. O'Neil, Sotirios A. Tsaftaris
This requires training with healthy and unhealthy data in DPMs.
1 code implementation • 29 Jun 2022 • Xiao Liu, Spyridon Thermos, Pedro Sanchez, Alison Q. O'Neil, Sotirios A. Tsaftaris
Moreover, with a reconstruction module, unlabeled data can also be used to learn the vMF kernels and likelihoods by recombining them to reconstruct the input image.
no code implementations • 29 Jun 2022 • Ruolin Su, Xiao Liu, Sotirios A. Tsaftaris
With the advent of AI learned on data, one can imagine that such rights can extent to requests for forgetting knowledge of patient's data within AI models.
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Büttner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.
no code implementations • 23 May 2022 • Pedro Sanchez, Jeremy P. Voisey, Tian Xia, Hannah I. Watson, Alison Q. ONeil, Sotirios A. Tsaftaris
Causal machine learning (CML) has experienced increasing popularity in healthcare.
no code implementations • 20 May 2022 • John Hartley, Sotirios A. Tsaftaris
Neural networks pose a privacy risk due to their propensity to memorise and leak training data.
no code implementations • 15 Mar 2022 • Tian Xia, Pedro Sanchez, Chen Qin, Sotirios A. Tsaftaris
To demonstrate the effectiveness of the proposed approach, we validate the method with the classification of Alzheimer's Disease (AD) as a downstream task.
1 code implementation • 21 Feb 2022 • Pedro Sanchez, Sotirios A. Tsaftaris
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
no code implementations • 16 Feb 2022 • John Hartley, Sotirios A. Tsaftaris
Neural networks pose a privacy risk to training data due to their propensity to memorise and leak information.
1 code implementation • 12 Feb 2022 • Grzegorz Jacenków, Alison Q. O'Neil, Sotirios A. Tsaftaris
We use the indication field to drive better image classification, by taking a transformer network which is unimodally pre-trained on text (BERT) and fine-tuning it for multimodal classification of a dual image-text input.
no code implementations • 10 Jan 2022 • Lei LI, Fuping Wu, Sihan Wang, Xinzhe Luo, Carlos Martin-Isla, Shuwei Zhai, Jianpeng Zhang, Yanfei Liu7, Zhen Zhang, Markus J. Ankenbrand, Haochuan Jiang, Xiaoran Zhang, Linhong Wang, Tewodros Weldebirhan Arega, Elif Altunok, Zhou Zhao, Feiyan Li, Jun Ma, Xiaoping Yang, Elodie Puybareau, Ilkay Oksuz, Stephanie Bricq, Weisheng Li, Kumaradevan Punithakumar, Sotirios A. Tsaftaris, Laura M. Schreiber, Mingjing Yang, Guocai Liu, Yong Xia, Guotai Wang, Sergio Escalera, Xiahai Zhuang
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on myocardium is the key to this assessment.
no code implementations • 30 Nov 2021 • Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris
By including our boundary, FROB reduces the threshold linked to the model's few-shot robustness; it maintains the OoD performance approximately independent of the number of few-shots.
1 code implementation • 28 Oct 2021 • Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris
OMASGAN addresses the rarity of anomalies by generating strong and adversarial OoD samples on the distribution boundary using only normal class data, effectively addressing mode collapse.
no code implementations • 29 Sep 2021 • Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris
We propose a self-supervised learning few-shot confidence boundary methodology based on generative and discriminative models, including classification.
1 code implementation • 26 Aug 2021 • Gabriele Valvano, Andrea Leo, Sotirios A. Tsaftaris
Collecting large-scale medical datasets with fine-grained annotations is time-consuming and requires experts.
2 code implementations • 26 Aug 2021 • Gabriele Valvano, Andrea Leo, Sotirios A. Tsaftaris
At inference, the discriminator is discarded, and only the segmentor is used to predict label maps on test images.
1 code implementation • 26 Aug 2021 • Xiao Liu, Pedro Sanchez, Spyridon Thermos, Alison Q. O'Neil, Sotirios A. Tsaftaris
Disentangled representation learning has been proposed as an approach to learning general representations even in the absence of, or with limited, supervision.
2 code implementations • 26 Aug 2021 • Gabriele Valvano, Andrea Leo, Sotirios A. Tsaftaris
After training is complete, the discriminator is usually discarded, and only the generator is used for inference.
no code implementations • 24 Jul 2021 • Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris
In this paper, we create a GAN-based tail formation model for anomaly detection, the Tail of distribution GAN (TailGAN), to generate samples on the tail of the data distribution and detect anomalies near the support boundary.
no code implementations • 21 Jul 2021 • Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris
We propose an invertible-residual-network-based model, the Boundary of Distribution Support Generator (BDSG).
no code implementations • 4 Jul 2021 • Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Alison Q. O'Neil, Alexander Weir, Roderick Murray-Smith, Sotirios A. Tsaftaris
Leakage of data from publicly available Machine Learning (ML) models is an area of growing significance as commercial and government applications of ML can draw on multiple sources of data, potentially including users' and clients' sensitive data.
1 code implementation • 4 Jul 2021 • Spyridon Thermos, Xiao Liu, Alison O'Neil, Sotirios A. Tsaftaris
Motivated by the ability to disentangle images into spatial anatomy (tensor) factors and accompanying imaging (vector) representations, we propose a framework termed "disentangled anatomy arithmetic", in which a generative model learns to combine anatomical factors of different input images such that when they are re-entangled with the desired imaging modality (e. g. MRI), plausible new cardiac images are created with the target characteristics.
2 code implementations • 24 Jun 2021 • Xiao Liu, Spyridon Thermos, Alison O'Neil, Sotirios A. Tsaftaris
We explicitly model the representations related to domain shifts.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Ben Glocker, Patrick Godau, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott, Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clarisa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
3 code implementations • 26 Feb 2021 • Sarthak Pati, Siddhesh P. Thakur, İbrahim Ethem Hamamcı, Ujjwal Baid, Bhakti Baheti, Megh Bhalerao, Orhun Güley, Sofia Mouchtaris, David Lang, Spyridon Thermos, Karol Gotkowski, Camila González, Caleb Grenko, Alexander Getka, Brandon Edwards, Micah Sheller, Junwen Wu, Deepthi Karkada, Ravi Panchumarthy, Vinayak Ahluwalia, Chunrui Zou, Vishnu Bashyam, Yuemeng Li, Babak Haghighi, Rhea Chitalia, Shahira Abousamra, Tahsin M. Kurc, Aimilia Gastounioti, Sezgin Er, Mark Bergman, Joel H. Saltz, Yong Fan, Prashant Shah, Anirban Mukhopadhyay, Sotirios A. Tsaftaris, Bjoern Menze, Christos Davatzikos, Despina Kontos, Alexandros Karargyris, Renato Umeton, Peter Mattson, Spyridon Bakas
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities.
1 code implementation • 5 Sep 2020 • Haochuan Jiang, Chengjia Wang, Agisilaos Chartsias, Sotirios A. Tsaftaris
Together with the corresponding encoding features, these representations are propagated to decoding layers with U-Net skip-connections.
1 code implementation • 5 Sep 2020 • Haochuan Jiang, Agisilaos Chartsias, Xinheng Zhang, Giorgos Papanastasiou, Scott Semple, Mark Dweck, David Semple, Rohan Dharmakumar, Sotirios A. Tsaftaris
The model is trained in a semi-supervised fashion with new reconstruction losses directly aiming to improve pathology segmentation with limited annotations.
2 code implementations • 27 Aug 2020 • Xiao Liu, Spyridon Thermos, Gabriele Valvano, Agisilaos Chartsias, Alison O'Neil, Sotirios A. Tsaftaris
In this paper, we conduct an empirical study to investigate the role of different biases in content-style disentanglement settings and unveil the relationship between the degree of disentanglement and task performance.
1 code implementation • 26 Aug 2020 • Xiao Liu, Spyridon Thermos, Agisilaos Chartsias, Alison O'Neil, Sotirios A. Tsaftaris
Robust cardiac image segmentation is still an open challenge due to the inability of the existing methods to achieve satisfactory performance on unseen data of different domains.
1 code implementation • 21 Aug 2020 • Grzegorz Jacenków, Alison Q. O'Neil, Brian Mohr, Sotirios A. Tsaftaris
We evaluate the method on two datasets: a new CLEVR-Seg dataset where we segment objects based on location, and the ACDC dataset conditioned on cardiac phase and slice location within the volume.
3 code implementations • 2 Jul 2020 • Gabriele Valvano, Andrea Leo, Sotirios A. Tsaftaris
We evaluated our model on several medical (ACDC, LVSC, CHAOS) and non-medical (PPSS) datasets, and we report performance levels matching those achieved by models trained with fully annotated segmentation masks.
no code implementations • 21 Apr 2020 • Xiao Liu, Sotirios A. Tsaftaris
In the era of deep learning, aggregation of data from several sources is a common approach to ensuring data diversity.
1 code implementation • 20 Apr 2020 • Tian Xia, Agisilaos Chartsias, Sotirios A. Tsaftaris
In this paper, we present a model that is encouraged to disentangle the information of pathology from what seems to be healthy.
no code implementations • 17 Mar 2020 • Shayne Shaw, Maciej Pajak, Aneta Lisowska, Sotirios A. Tsaftaris, Alison Q. O'Neil
Deep learning shows great potential for the domain of digital pathology.
1 code implementation • 5 Dec 2019 • Hao Chen, Mario Valerio Giuffrida, Peter Doerner, Sotirios A. Tsaftaris
We evaluate our method in several datasets in medical imaging, plant science, and remote sensing.
1 code implementation • 4 Dec 2019 • Tian Xia, Agisilaos Chartsias, Chengjia Wang, Sotirios A. Tsaftaris
Our method synthesises images conditioned on two factors: age (a continuous variable), and status of Alzheimer's Disease (AD, an ordinal variable).
2 code implementations • 11 Nov 2019 • Agisilaos Chartsias, Giorgos Papanastasiou, Chengjia Wang, Scott Semple, David E. Newby, Rohan Dharmakumar, Sotirios A. Tsaftaris
Core to our method is learning a disentangled decomposition into anatomical and imaging factors.
1 code implementation • 29 Aug 2019 • Gabriele Valvano, Agisilaos Chartsias, Andrea Leo, Sotirios A. Tsaftaris
There has been an increasing focus in learning interpretable feature representations, particularly in applications such as medical image analysis that require explainability, whilst relying less on annotated data (since annotations can be tedious and costly).
no code implementations • 11 Jul 2019 • Chengjia Wang, Giorgos Papanastasiou, Agisilaos Chartsias, Grzegorz Jacenkow, Sotirios A. Tsaftaris, Heye Zhang
Inter-modality image registration is an critical preprocessing step for many applications within the routine clinical pathway.
4 code implementations • 22 Mar 2019 • Agisilaos Chartsias, Thomas Joyce, Giorgos Papanastasiou, Michelle Williams, David Newby, Rohan Dharmakumar, Sotirios A. Tsaftaris
We can venture further and consider that a medical image naturally factors into some spatial factors depicting anatomy and factors that denote the imaging characteristics.
no code implementations • 22 Feb 2019 • Rafael Boloix-Tortosa, Juan José Murillo-Fuentes, Sotirios A. Tsaftaris
Also, the flexibility of the proposed generalized approach is tested in a second experiment with non-independent real and imaginary parts.
no code implementations • 10 Jan 2019 • Tian Xia, Agisilaos Chartsias, Sotirios A. Tsaftaris
Pseudo healthy synthesis, i. e. the creation of a subject-specific `healthy' image from a pathological one, could be helpful in tasks such as anomaly detection, understanding changes induced by pathology and disease or even as data augmentation.
1 code implementation • 19 Mar 2018 • Agisilaos Chartsias, Thomas Joyce, Giorgos Papanastasiou, Scott Semple, Michelle Williams, David Newby, Rohan Dharmakumar, Sotirios A. Tsaftaris
Specifically, we achieve comparable performance to fully supervised networks using a fraction of labelled images in experiments on ACDC and a dataset from Edinburgh Imaging Facility QMRI.
no code implementations • 5 Sep 2017 • Andrei Dobrescu, Mario Valerio Giuffrida, Sotirios A. Tsaftaris
While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation).
no code implementations • 4 Sep 2017 • Mario Valerio Giuffrida, Hanno Scharr, Sotirios A. Tsaftaris
We show that our model is able to generate realistic 128x128 colour images of plants.
no code implementations • 28 Jun 2016 • Mario Valerio Giuffrida, Sotirios A. Tsaftaris
In this paper, we propose the Theta-Restricted Boltzmann Machine ({\theta}-RBM in short), which builds upon the original RBM formulation and injects the notion of rotation-invariance during the learning procedure.
no code implementations • 24 Apr 2016 • Mario Valerio Giuffrida, Sotirios A. Tsaftaris
Finding suitable features has been an essential problem in computer vision.