1 code implementation • 12 May 2022 • Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
Our method is composed of two networks: a localizer that yields segmentation mask, followed by a classifier.
1 code implementation • 7 Jan 2022 • Soufiane Belharbi, Marco Pedersoli, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
The CNN is exploited to collect both positive and negative evidence at the pixel level to train the decoder.
1 code implementation • 15 Sep 2021 • Soufiane Belharbi, Aydin Sarraf, Marco Pedersoli, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
Interpolation is required to restore full size CAMs, yet it does not consider the statistical properties of objects, such as color and texture, leading to activations with inconsistent boundaries, and inaccurate localizations.
no code implementations • 13 Apr 2021 • Madhu Kiran, R Gnana Praveen, Le Thanh Nguyen-Meidine, Soufiane Belharbi, Louis-Antoine Blais-Morin, Eric Granger
Hence, our proposed student-teacher framework is trained to address the occlusion problem by matching the distributions of between- and within-class distances (DCDs) of occluded samples with that of holistic (non-occluded) samples, thereby using the latter as a soft labeled reference to learn well separated DCDs.
2 code implementations • 14 Nov 2020 • Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
We propose novel regularization terms, which enable the model to seek both non-discriminative and discriminative regions, while discouraging unbalanced segmentations.
1 code implementation • 10 Oct 2020 • Soufiane Belharbi, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions.
1 code implementation • 3 Dec 2019 • Akhil Meethal, Marco Pedersoli, Soufiane Belharbi, Eric Granger
Weakly supervised object localization is a challenging task in which the object of interest should be localized while learning its appearance.
1 code implementation • 25 Nov 2019 • Soufiane Belharbi, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
We propose a new constrained-optimization formulation for deep ordinal classification, in which uni-modality of the label distribution is enforced implicitly via a set of inequality constraints over all the pairs of adjacent labels.
Ranked #1 on
Historical Color Image Dating
on HCI
1 code implementation • 8 Sep 2019 • Jérôme Rony, Soufiane Belharbi, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
Four key challenges are identified for the application of deep WSOL methods in histology -- under/over activation of CAMs, sensitivity to thresholding, and model selection.
1 code implementation • 25 Jul 2019 • Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger
Pointwise localization allows more precise localization and accurate interpretability, compared to bounding box, in applications where objects are highly unstructured such as in medical domain.
1 code implementation • 13 Jul 2018 • Soufiane Belharbi
In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications.
1 code implementation • 6 Sep 2017 • Soufiane Belharbi, Clément Chatelain, Romain Hérault, Sébastien Adam
In this work, we tackle the issue of training neural networks for classification task when few training samples are available.
1 code implementation • 28 Apr 2015 • Soufiane Belharbi, Romain Hérault, Clément Chatelain, Sébastien Adam
The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy.