no code implementations • 13 Feb 2024 • Xiangyu Chang, Sk Miraj Ahmed, Srikanth V. Krishnamurthy, Basak Guler, Ananthram Swami, Samet Oymak, Amit K. Roy-Chowdhury
The key premise of federated learning (FL) is to train ML models across a diverse set of data-owners (clients), without exchanging local data.
no code implementations • 6 Jan 2024 • Xiangyu Chang, Sk Miraj Ahmed, Srikanth V. Krishnamurthy, Basak Guler, Ananthram Swami, Samet Oymak, Amit K. Roy-Chowdhury
Parameter-efficient tuning (PET) methods such as LoRA, Adapter, and Visual Prompt Tuning (VPT) have found success in enabling adaptation to new domains by tuning small modules within a transformer model.
no code implementations • 20 Sep 2022 • Abhishek Aich, Shasha Li, Chengyu Song, M. Salman Asif, Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury
Our goal is to design an attack strategy that can learn from such natural scenes by leveraging the local patch differences that occur inherently in such images (e. g. difference between the local patch on the object `person' and the object `bike' in a traffic scene).
no code implementations • 20 Sep 2022 • Abhishek Aich, Calvin-Khang Ta, Akash Gupta, Chengyu Song, Srikanth V. Krishnamurthy, M. Salman Asif, Amit K. Roy-Chowdhury
Using the joint image-text features to train the generator, we show that GAMA can craft potent transferable perturbations in order to fool victim classifiers in various attack settings.
no code implementations • CVPR 2022 • Zikui Cai, Shantanu Rane, Alejandro E. Brito, Chengyu Song, Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury, M. Salman Asif
We compare our zero-query attack against a few-query scheme that repeatedly checks if the victim system is fooled.
1 code implementation • 6 Dec 2021 • Zikui Cai, Xinxin Xie, Shasha Li, Mingjun Yin, Chengyu Song, Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury, M. Salman Asif
In this paper, we present a new approach to generate context-aware attacks for object detectors.
no code implementations • 24 Oct 2021 • Mingjun Yin, Shasha Li, Chengyu Song, M. Salman Asif, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy
A very recent defense strategy for detecting adversarial examples, that has been shown to be robust to current attacks, is to check for intrinsic context consistencies in the input data, where context refers to various relationships (e. g., object-to-object co-occurrence relationships) in images.
1 code implementation • NeurIPS 2021 • Shasha Li, Abhishek Aich, Shitong Zhu, M. Salman Asif, Chengyu Song, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy
When compared to the image classification models, black-box adversarial attacks against video classification models have been largely understudied.
no code implementations • ICCV 2021 • Mingjun Yin, Shasha Li, Zikui Cai, Chengyu Song, M. Salman Asif, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy
Vision systems that deploy Deep Neural Networks (DNNs) are known to be vulnerable to adversarial examples.
no code implementations • 26 Aug 2020 • Shasha Li, Karim Khalil, Rameswar Panda, Chengyu Song, Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury, Ananthram Swami
The emergence of Internet of Things (IoT) brings about new security challenges at the intersection of cyber and physical spaces.
no code implementations • 29 Jan 2020 • Shitong Zhu, Zhongjie Wang, Xun Chen, Shasha Li, Umar Iqbal, Zhiyun Qian, Kevin S. Chan, Srikanth V. Krishnamurthy, Zubair Shafiq
Efforts by online ad publishers to circumvent traditional ad blockers towards regaining fiduciary benefits, have been demonstrably successful.
1 code implementation • 22 Oct 2018 • Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V. Krishnamurthy, Edward J. M. Colbert, Patrick McDaniel
In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states.
Cryptography and Security
1 code implementation • 2 Jul 2018 • Shasha Li, Ajaya Neupane, Sujoy Paul, Chengyu Song, Srikanth V. Krishnamurthy, Amit K. Roy Chowdhury, Ananthram Swami
We exploit recent advances in generative adversarial network (GAN) architectures to account for temporal correlations and generate adversarial samples that can cause misclassification rates of over 80% for targeted activities.