no code implementations • 27 Feb 2025 • Ang Cao, Sergio Arnaud, Oleksandr Maksymets, Jianing Yang, Ayush Jain, Sriram Yenamandra, Ada Martin, Vincent-Pierre Berges, Paul McVay, Ruslan Partsey, Aravind Rajeswaran, Franziska Meier, Justin Johnson, Jeong Joon Park, Alexander Sax
Our approach to training 3D vision-language understanding models is to train a feedforward model that makes predictions in 3D, but never requires 3D labels and is supervised only in 2D, using 2D losses and differentiable rendering.
no code implementations • 9 Jul 2024 • Sriram Yenamandra, Arun Ramachandran, Mukul Khanna, Karmesh Yadav, Jay Vakil, Andrew Melnik, Michael Büttner, Leon Harz, Lyon Brown, Gora Chand Nandi, Arjun PS, Gaurav Kumar Yadav, Rahul Kala, Robert Haschke, Yang Luo, Jinxin Zhu, Yansen Han, Bingyi Lu, Xuan Gu, Qinyuan Liu, Yaping Zhao, Qiting Ye, Chenxiao Dou, Yansong Chua, Volodymyr Kuzma, Vladyslav Humennyy, Ruslan Partsey, Jonathan Francis, Devendra Singh Chaplot, Gunjan Chhablani, Alexander Clegg, Theophile Gervet, Vidhi Jain, Ram Ramrakhya, Andrew Szot, Austin Wang, Tsung-Yen Yang, Aaron Edsinger, Charlie Kemp, Binit Shah, Zsolt Kira, Dhruv Batra, Roozbeh Mottaghi, Yonatan Bisk, Chris Paxton
In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments.
1 code implementation • CVPR 2024 • Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet, Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi
The Embodied AI community has made significant strides in visual navigation tasks, exploring targets from 3D coordinates, objects, language descriptions, and images.
no code implementations • CVPR 2024 • Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff, Sneha Silwal, Paul McVay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav, Qiyang Li, Ben Newman, Mohit Sharma, Vincent Berges, Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk, Dhruv Batra, Mrinal Kalakrishnan, Franziska Meier, Chris Paxton, Alexander Sax, Aravind Rajeswaran
We present a modern formulation of Embodied Question Answering (EQA) as the task of understanding an environment well enough to answer questions about it in natural language.
1 code implementation • ICCV 2023 • Sriram Yenamandra, Pratik Ramesh, Viraj Prabhu, Judy Hoffman
Computer vision datasets frequently contain spurious correlations between task-relevant labels and (easy to learn) latent task-irrelevant attributes (e. g. context).
no code implementations • 20 Jun 2023 • Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, Zsolt Kira, Manolis Savva, Angel Chang, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi, Yonatan Bisk, Chris Paxton
HomeRobot (noun): An affordable compliant robot that navigates homes and manipulates a wide range of objects in order to complete everyday tasks.
2 code implementations • NeurIPS 2023 • Viraj Prabhu, Sriram Yenamandra, Prithvijit Chattopadhyay, Judy Hoffman
We propose an automated algorithm to stress-test a trained visual model by generating language-guided counterfactual test images (LANCE).
1 code implementation • 16 Jun 2022 • Viraj Prabhu, Sriram Yenamandra, Aaditya Singh, Judy Hoffman
Inspired by the design of recent SSL approaches based on learning from partial image inputs generated via masking or cropping -- either by learning to predict the missing pixels, or learning representational invariances to such augmentations -- we propose PACMAC, a simple two-stage adaptation algorithm for self-supervised ViTs.
1 code implementation • 22 May 2022 • Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot, Harsh Agrawal
Instead, the agent must learn from and is evaluated against human preferences of which objects belong where in a tidy house.