no code implementations • 11 May 2022 • Dimitris Stripelis, Umang Gupta, Hamza Saleem, Nikhil Dhinagar, Tanmay Ghai, Rafael Sanchez, Chrysovalantis Anastasiou, Armaghan Asghar, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, Jose Luis Ambite
Specifically, we investigate training neural models to classify Alzheimer's disease, and estimate Brain Age, from magnetic resonance imaging datasets distributed across multiple sites, including heterogeneous environments where sites have different amounts of data, statistical distributions, and computational capabilities.
no code implementations • 7 Aug 2021 • Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, Jose Luis Ambite
Federated learning (FL) enables distributed computation of machine learning models over various disparate, remote data sources, without requiring to transfer any individual data to a centralized location.
1 code implementation • 5 Feb 2015 • Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Srivatsan Ravi, Di Shang
Designing an efficient concurrent data structure is an important challenge that is not easy to meet.
Distributed, Parallel, and Cluster Computing