no code implementations • NeurIPS 2021 • Samuel Gruffaz, Pierre-Emmanuel Poulet, Etienne Maheux, Bruno Jedynak, Stanley Durrleman
Specifically, we learn the metric as the push-forward of the Euclidean metric by a diffeomorphism.
1 code implementation • 21 Jul 2021 • Ninon Burgos, Mauricio Díaz, Michael Bacci, Simona Bottani, Omar El-Rifai, Sabrina Fontanella, Pietro Gori, Jérémy Guillon, Alexis Guyot, Ravi Hassanaly, Thomas Jacquemont, Pascal Lu, Arnaud Marcoux, Tristan Moreau, Jorge Samper-González, Marc Teichmann, Elina Thibeau--Sutre, Ghislain Vaillant, Junhao Wen, Adam Wild, Marie-Odile Habert, Stanley Durrleman, Alexandre Routier, Olivier Colliot
It relies on the brain imaging data structure (BIDS) for the organization of raw neuroimaging datasets and on established tools written by the community to build its pipelines.
no code implementations • 7 Sep 2020 • Anupama Goparaju, Alexandre Bone, Nan Hu, Heath B. Henninger, Andrew E. Anderson, Stanley Durrleman, Matthijs Jacxsens, Alan Morris, Ibolya Csecs, Nassir Marrouche, Shireen Y. Elhabian
Statistical shape modeling (SSM) is widely used in biology and medicine as a new generation of morphometric approaches for the quantitative analysis of anatomical shapes.
1 code implementation • 19 Jun 2020 • Thomas Lartigue, Stanley Durrleman, Stéphanie Allassonnière
We demonstrate on synthetic and real data how this method fulfils its goal and succeeds in identifying the sub-populations where the Mixtures of GGM are disrupted by the effect of the co-features.
no code implementations • 23 Mar 2020 • Thomas Lartigue, Stanley Durrleman, Stéphanie Allassonnière
In this paper, we introduce a theoretical framework, with state-of-the-art convergence guarantees, for any deterministic approximation of the E step.
no code implementations • 11 Mar 2020 • Thomas Lartigue, Simona Bottani, Stephanie Baron, Olivier Colliot, Stanley Durrleman, Stéphanie Allassonnière
We demonstrate on synthetic data that, when the sample size is small, the two methods produce graphs with either too few or too many edges when compared to the real one.
4 code implementations • 9 Feb 2020 • Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski, Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K. Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang Chen, Ke Qi, Shiyang Chen, Deqiang Qiu, Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venkatraghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang, Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R. White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada, Leon Aksman, Andre Altmann, Cynthia M. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jammeh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno Jedynak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein, Daniel C. Alexander
TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease.
2 code implementations • 16 Apr 2019 • Junhao Wen, Elina Thibeau-Sutre, Mauricio Diaz-Melo, Jorge Samper-Gonzalez, Alexandre Routier, Simona Bottani, Didier Dormont, Stanley Durrleman, Ninon Burgos, Olivier Colliot
The different approaches generalized well to similar populations but not to datasets with different inclusion criteria or demographical characteristics.
no code implementations • 5 Apr 2019 • Igor Koval, Stéphanie Allassonnière, Stanley Durrleman
The ability to predict the progression of biomarkers, notably in NDD, is limited by the size of the longitudinal data sets, in terms of number of patients, number of visits per patients and total follow-up time.
2 code implementations • 28 Dec 2018 • Junhao Wen, Jorge Samper-Gonzalez, Simona Bottani, Alexandre Routier, Ninon Burgos, Thomas Jacquemont, Sabrina Fontanella, Stanley Durrleman, Stephane Epelbaum, Anne Bertrand, Olivier Colliot
Lastly, with proper FR and FS, the performance of diffusion MRI features is comparable to that of T1w MRI.
no code implementations • 20 Aug 2018 • Jorge Samper-González, Ninon Burgos, Simona Bottani, Sabrina Fontanella, Pascal Lu, Arnaud Marcoux, Alexandre Routier, Jérémy Guillon, Michael Bacci, Junhao Wen, Anne Bertrand, Hugo Bertin, Marie-Odile Habert, Stanley Durrleman, Theodoros Evgeniou, Olivier Colliot, for the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers, Lifestyle flagship study of ageing
We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data.
no code implementations • 21 Apr 2018 • Wen Wei, Emilie Poirion, Benedetta Bodini, Stanley Durrleman, Nicholas Ayache, Bruno Stankoff, Olivier Colliot
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS).
no code implementations • CVPR 2018 • Alexandre Bône, Olivier Colliot, Stanley Durrleman
We propose a method to learn a distribution of shape trajectories from longitudinal data, i. e. the collection of individual objects repeatedly observed at multiple time-points.
no code implementations • 23 Nov 2017 • Alexandre Bône, Maxime Louis, Alexandre Routier, Jorge Samper, Michael Bacci, Benjamin Charlier, Olivier Colliot, Stanley Durrleman
We propose a method to predict the subject-specific longitudinal progression of brain structures extracted from baseline MRI, and evaluate its performance on Alzheimer's disease data.
no code implementations • 23 Nov 2017 • Maxime Louis, Alexandre Bône, Benjamin Charlier, Stanley Durrleman
The analysis of manifold-valued data requires efficient tools from Riemannian geometry to cope with the computational complexity at stake.
no code implementations • 25 Sep 2017 • Igor Koval, Jean-Baptiste Schiratti, Alexandre Routier, Michael Bacci, Olivier Colliot, Stéphanie Allassonnière, Stanley Durrleman
Model parameters show the variability of this average pattern of atrophy in terms of trajectories across brain regions, age at disease onset and pace of propagation.
no code implementations • 21 Sep 2017 • Jorge Samper-González, Ninon Burgos, Sabrina Fontanella, Hugo Bertin, Marie-Odile Habert, Stanley Durrleman, Theodoros Evgeniou, Olivier Colliot
The core components are: 1) code to automatically convert the full ADNI database into BIDS format; 2) a modular architecture based on Nipype in order to easily plug-in different classification and feature extraction tools; 3) feature extraction pipelines for MRI and PET data; 4) baseline classification approaches for unimodal and multimodal features.
no code implementations • 18 Sep 2017 • Kuldeep Kumar, Pietro Gori, Benjamin Charlier, Stanley Durrleman, Olivier Colliot, Christian Desrosiers
We use it to cluster fibers with a dictionary learning and sparse coding-based framework, and present a preliminary analysis using HCP data.
no code implementations • NeurIPS 2015 • Jean-Baptiste Schiratti, Stéphanie Allassonniere, Olivier Colliot, Stanley Durrleman
The model allows to estimate a group-average trajectory in the space of measurements.