Search Results for author: Stefan Klein

Found 26 papers, 10 papers with code

Computer-aided diagnosis and prediction in brain disorders

no code implementations29 Jun 2022 Vikram Venkatraghavan, Sebastian R. van der Voort, Daniel Bos, Marion Smits, Frederik Barkhof, Wiro J. Niessen, Stefan Klein, Esther E. Bron

Regarding prediction, i. e. estimation of the future 'condition' of the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and predicting patient outcomes after treatment in brain cancer.

Decision Making Predicting Patient Outcomes

Federated Learning Enables Big Data for Rare Cancer Boundary Detection

1 code implementation22 Apr 2022 Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-han Wang, G Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer, Soonmee Cha, Madhura Ingalhalikar, Manali Jadhav, Umang Pandey, Jitender Saini, John Garrett, Matthew Larson, Robert Jeraj, Stuart Currie, Russell Frood, Kavi Fatania, Raymond Y Huang, Ken Chang, Carmen Balana, Jaume Capellades, Josep Puig, Johannes Trenkler, Josef Pichler, Georg Necker, Andreas Haunschmidt, Stephan Meckel, Gaurav Shukla, Spencer Liem, Gregory S Alexander, Joseph Lombardo, Joshua D Palmer, Adam E Flanders, Adam P Dicker, Haris I Sair, Craig K Jones, Archana Venkataraman, Meirui Jiang, Tiffany Y So, Cheng Chen, Pheng Ann Heng, Qi Dou, Michal Kozubek, Filip Lux, Jan Michálek, Petr Matula, Miloš Keřkovský, Tereza Kopřivová, Marek Dostál, Václav Vybíhal, Michael A Vogelbaum, J Ross Mitchell, Joaquim Farinhas, Joseph A Maldjian, Chandan Ganesh Bangalore Yogananda, Marco C Pinho, Divya Reddy, James Holcomb, Benjamin C Wagner, Benjamin M Ellingson, Timothy F Cloughesy, Catalina Raymond, Talia Oughourlian, Akifumi Hagiwara, Chencai Wang, Minh-Son To, Sargam Bhardwaj, Chee Chong, Marc Agzarian, Alexandre Xavier Falcão, Samuel B Martins, Bernardo C A Teixeira, Flávia Sprenger, David Menotti, Diego R Lucio, Pamela Lamontagne, Daniel Marcus, Benedikt Wiestler, Florian Kofler, Ivan Ezhov, Marie Metz, Rajan Jain, Matthew Lee, Yvonne W Lui, Richard McKinley, Johannes Slotboom, Piotr Radojewski, Raphael Meier, Roland Wiest, Derrick Murcia, Eric Fu, Rourke Haas, John Thompson, David Ryan Ormond, Chaitra Badve, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Rivka R Colen, Linmin Pei, Murat AK, Ashok Srinivasan, J Rajiv Bapuraj, Arvind Rao, Nicholas Wang, Ota Yoshiaki, Toshio Moritani, Sevcan Turk, Joonsang Lee, Snehal Prabhudesai, Fanny Morón, Jacob Mandel, Konstantinos Kamnitsas, Ben Glocker, Luke V M Dixon, Matthew Williams, Peter Zampakis, Vasileios Panagiotopoulos, Panagiotis Tsiganos, Sotiris Alexiou, Ilias Haliassos, Evangelia I Zacharaki, Konstantinos Moustakas, Christina Kalogeropoulou, Dimitrios M Kardamakis, Yoon Seong Choi, Seung-Koo Lee, Jong Hee Chang, Sung Soo Ahn, Bing Luo, Laila Poisson, Ning Wen, Pallavi Tiwari, Ruchika Verma, Rohan Bareja, Ipsa Yadav, Jonathan Chen, Neeraj Kumar, Marion Smits, Sebastian R van der Voort, Ahmed Alafandi, Fatih Incekara, Maarten MJ Wijnenga, Georgios Kapsas, Renske Gahrmann, Joost W Schouten, Hendrikus J Dubbink, Arnaud JPE Vincent, Martin J van den Bent, Pim J French, Stefan Klein, Yading Yuan, Sonam Sharma, Tzu-Chi Tseng, Saba Adabi, Simone P Niclou, Olivier Keunen, Ann-Christin Hau, Martin Vallières, David Fortin, Martin Lepage, Bennett Landman, Karthik Ramadass, Kaiwen Xu, Silky Chotai, Lola B Chambless, Akshitkumar Mistry, Reid C Thompson, Yuriy Gusev, Krithika Bhuvaneshwar, Anousheh Sayah, Camelia Bencheqroun, Anas Belouali, Subha Madhavan, Thomas C Booth, Alysha Chelliah, Marc Modat, Haris Shuaib, Carmen Dragos, Aly Abayazeed, Kenneth Kolodziej, Michael Hill, Ahmed Abbassy, Shady Gamal, Mahmoud Mekhaimar, Mohamed Qayati, Mauricio Reyes, Ji Eun Park, Jihye Yun, Ho Sung Kim, Abhishek Mahajan, Mark Muzi, Sean Benson, Regina G H Beets-Tan, Jonas Teuwen, Alejandro Herrera-Trujillo, Maria Trujillo, William Escobar, Ana Abello, Jose Bernal, Jhon Gómez, Joseph Choi, Stephen Baek, Yusung Kim, Heba Ismael, Bryan Allen, John M Buatti, Aikaterini Kotrotsou, Hongwei Li, Tobias Weiss, Michael Weller, Andrea Bink, Bertrand Pouymayou, Hassan F Shaykh, Joel Saltz, Prateek Prasanna, Sampurna Shrestha, Kartik M Mani, David Payne, Tahsin Kurc, Enrique Pelaez, Heydy Franco-Maldonado, Francis Loayza, Sebastian Quevedo, Pamela Guevara, Esteban Torche, Cristobal Mendoza, Franco Vera, Elvis Ríos, Eduardo López, Sergio A Velastin, Godwin Ogbole, Dotun Oyekunle, Olubunmi Odafe-Oyibotha, Babatunde Osobu, Mustapha Shu'aibu, Adeleye Dorcas, Mayowa Soneye, Farouk Dako, Amber L Simpson, Mohammad Hamghalam, Jacob J Peoples, Ricky Hu, Anh Tran, Danielle Cutler, Fabio Y Moraes, Michael A Boss, James Gimpel, Deepak Kattil Veettil, Kendall Schmidt, Brian Bialecki, Sailaja Marella, Cynthia Price, Lisa Cimino, Charles Apgar, Prashant Shah, Bjoern Menze, Jill S Barnholtz-Sloan, Jason Martin, Spyridon Bakas

Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data.

Boundary Detection Federated Learning

Ten years of image analysis and machine learning competitions in dementia

no code implementations15 Dec 2021 Esther E. Bron, Stefan Klein, Annika Reinke, Janne M. Papma, Lena Maier-Hein, Daniel C. Alexander, Neil P. Oxtoby

Key for increasing impact in this way are larger testing data sizes, which could be reached by sharing algorithms rather than data to exploit data that cannot be shared.

BIG-bench Machine Learning

A Review of Generative Adversarial Networks in Cancer Imaging: New Applications, New Solutions

no code implementations20 Jul 2021 Richard Osuala, Kaisar Kushibar, Lidia Garrucho, Akis Linardos, Zuzanna Szafranowska, Stefan Klein, Ben Glocker, Oliver Diaz, Karim Lekadir

In this review, we assess the potential of GANs to address a number of key challenges of cancer imaging, including data scarcity and imbalance, domain and dataset shifts, data access and privacy, data annotation and quantification, as well as cancer detection, tumour profiling and treatment planning.

Lesion Detection

Evaluating glioma growth predictions as a forward ranking problem

no code implementations22 Mar 2021 Karin A. van Garderen, Sebastian R. van der Voort, Maarten M. J. Wijnenga, Fatih Incekara, Georgios Kapsas, Renske Gahrmann, Ahmad Alafandi, Marion Smits, Stefan Klein

The problem of tumor growth prediction is challenging, but promising results have been achieved with both model-driven and statistical methods.

Learning unbiased group-wise registration (LUGR) and joint segmentation: evaluation on longitudinal diffusion MRI

no code implementations3 Nov 2020 Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

We here propose an analytical framework based on an unbiased learning strategy for group-wise registration that simultaneously registers images to the mean space of a group to obtain consistent segmentations.

Time efficiency analysis for undersampled quantitative MRI acquisitions

no code implementations13 Oct 2020 Riwaj Byanju, Stefan Klein, Alexandra Cristobal-Huerta, J. A. Hernandez-Tamames, Dirk H. J. Poot

TEUSQA is designed for a particular class of reconstruction techniques that directly estimate tissue parameters, possibly using prior information to regularize the estimation.

Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations

no code implementations15 Sep 2020 Vikram Venkatraghavan, Stefan Klein, Lana Fani, Leontine S. Ham, Henri Vrooman, M. Kamran Ikram, Wiro J. Niessen, Esther E. Bron

In this work, we determined the effect of APOE alleles on the disease progression timeline of AD using a discriminative event-based model (DEBM).

Towards segmentation and spatial alignment of the human embryonic brain using deep learning for atlas-based registration

1 code implementation13 May 2020 Wietske A. P. Bastiaansen, Melek Rousian, Régine P. M. Steegers-Theunissen, Wiro J. Niessen, Anton Koning, Stefan Klein

We propose an unsupervised deep learning method for atlas based registration to achieve segmentation and spatial alignment of the embryonic brain in a single framework.

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

4 code implementations9 Feb 2020 Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski, Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K. Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang Chen, Ke Qi, Shiyang Chen, Deqiang Qiu, Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venkatraghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang, Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R. White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada, Leon Aksman, Andre Altmann, Cynthia M. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jammeh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno Jedynak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein, Daniel C. Alexander

TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease.

alzheimer's disease detection Disease Prediction

Deep learning-based retinal vessel segmentation with cross-modal evaluation

no code implementations MIDL 2019 Luisa Sanchez Brea, Danilo Andrade De Jesus, Stefan Klein, Theo van Walsum

The main goal is to analyse if a model trained in one of two modalities, Fundus Photography (FP) or Scanning Laser Ophthalmoscopy (SLO), is transferable to the other modality accurately.

Retinal Vessel Segmentation

Towards continuous learning for glioma segmentation with elastic weight consolidation

no code implementations25 Sep 2019 Karin van Garderen, Sebastian van der Voort, Fatih Incekara, Marion Smits, Stefan Klein

When finetuning a convolutional neural network (CNN) on data from a new domain, catastrophic forgetting will reduce performance on the original training data.

Multi-modal segmentation with missing MR sequences using pre-trained fusion networks

no code implementations25 Sep 2019 Karin van Garderen, Marion Smits, Stefan Klein

Missing data is a common problem in machine learning and in retrospective imaging research it is often encountered in the form of missing imaging modalities.

A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes

no code implementations26 Aug 2019 Bo Li, Wiro Niessen, Stefan Klein, Marius de Groot, Arfan Ikram, Meike Vernooij, Esther Bron

Registration between time-points is used either as a prior for segmentation in a subsequent time point or to perform segmentation in a common space.

Event-Based Modeling with High-Dimensional Imaging Biomarkers for Estimating Spatial Progression of Dementia

no code implementations8 Mar 2019 Vikram Venkatraghavan, Florian Dubost, Esther E. Bron, Wiro J. Niessen, Marleen de Bruijne, Stefan Klein

In order to validate the biomarker ordering obtained using nDEBM, we also present a framework for Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics neurodegeneration in brain regions.

Disease Progression Timeline Estimation for Alzheimer's Disease using Discriminative Event Based Modeling

1 code implementation10 Aug 2018 Vikram Venkatraghavan, Esther E. Bron, Wiro J. Niessen, Stefan Klein, for the Alzheimer's Disease Neuroimaging Initiative

We evaluated the proposed method on Alzheimer's Disease Neuroimaging Initiative (ADNI) data and compared the results with existing state-of-the-art EBM methods.

A Discriminative Event Based Model for Alzheimer's Disease Progression Modeling

1 code implementation21 Feb 2017 Vikram Venkatraghavan, Esther Bron, Wiro Niessen, Stefan Klein

To evaluate the accuracy, we performed extensive experiments on synthetic data simulating the progression of Alzheimer's disease.

Cannot find the paper you are looking for? You can Submit a new open access paper.