no code implementations • 3 Aug 2023 • Jonas Utz, Tobias Weise, Maja Schlereth, Fabian Wagner, Mareike Thies, Mingxuan Gu, Stefan Uderhardt, Katharina Breininger
We show that this increases coherence between generated images and cycled masks and evaluate synthetic datasets on a downstream nuclei segmentation task.
no code implementations • 1 Mar 2023 • Mareike Thies, Fabian Wagner, Mingxuan Gu, Siyuan Mei, Yixing Huang, Sabrina Pechmann, Oliver Aust, Daniela Weidner, Georgiana Neag, Stefan Uderhardt, Georg Schett, Silke Christiansen, Andreas Maier
Intravital X-ray microscopy (XRM) in preclinical mouse models is of vital importance for the identification of microscopic structural pathological changes in the bone which are characteristic of osteoporosis.
no code implementations • 9 Dec 2022 • Fabian Wagner, Mareike Thies, Laura Pfaff, Noah Maul, Sabrina Pechmann, Mingxuan Gu, Jonas Utz, Oliver Aust, Daniela Weidner, Georgiana Neag, Stefan Uderhardt, Jang-Hwan Choi, Andreas Maier
We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss.
no code implementations • 29 Jul 2022 • Leonid Mill, Oliver Aust, Jochen A. Ackermann, Philipp Burger, Monica Pascual, Katrin Palumbo-Zerr, Gerhard Krönke, Stefan Uderhardt, Georg Schett, Christoph S. Clemen, Rolf Schröder, Christian Holtzhausen, Samir Jabari, Andreas Maier, Anika Grüneboom
Here we introduce SYNTA (synthetic data) as a novel approach for the generation of synthetic, photo-realistic, and highly complex biomedical images as training data for DL systems.
1 code implementation • 25 Jan 2022 • Fabian Wagner, Mareike Thies, Mingxuan Gu, Yixing Huang, Sabrina Pechmann, Mayank Patwari, Stefan Ploner, Oliver Aust, Stefan Uderhardt, Georg Schett, Silke Christiansen, Andreas Maier
Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.