no code implementations • 13 Apr 2022 • Stefano Pedemonte, Trevor Tsue, Brent Mombourquette, Yen Nhi Truong Vu, Thomas Matthews, Rodrigo Morales Hoil, Meet Shah, Nikita Ghare, Naomi Zingman-Daniels, Susan Holley, Catherine M. Appleton, Jason Su, Richard L. Wahl
This work lays the foundation for semi-autonomous breast cancer screening systems that could benefit patients and healthcare systems by reducing false positives, unnecessary procedures, patient anxiety, and expenses.
no code implementations • 23 Jan 2020 • Stefano Pedemonte, Brent Mombourquette, Alexis Goh, Trevor Tsue, Aaron Long, Sadanand Singh, Thomas Paul Matthews, Meet Shah, Jason Su
In this work, we leverage a large set of FFDM images with loose bounding boxes of mammographically significant findings to train a deep learning detector with extreme sensitivity.
no code implementations • 23 Jan 2020 • Thomas P. Matthews, Sadanand Singh, Brent Mombourquette, Jason Su, Meet P. Shah, Stefano Pedemonte, Aaron Long, David Maffit, Jenny Gurney, Rodrigo Morales Hoil, Nikita Ghare, Douglas Smith, Stephen M. Moore, Susan C. Marks, Richard L. Wahl
Conclusion: A BI-RADS breast density DL model demonstrated strong performance on FFDM and SM images from two institutions without training on SM images and improved using few SM images.
no code implementations • 23 Jan 2020 • Sadanand Singh, Thomas Paul Matthews, Meet Shah, Brent Mombourquette, Trevor Tsue, Aaron Long, Ranya Almohsen, Stefano Pedemonte, Jason Su
In particular, we use average histogram matching (HM) and DL fine-tuning methods to generalize a FFDM model to the 2D maximum intensity projection (MIP) of DBT images.
no code implementations • 24 Aug 2018 • Michele Scipioni, Stefano Pedemonte, Maria Filomena Santarelli, Luigi Landini
In this work, we introduce a new probabilistic modeling strategy based on the key assumption that activity time course would be subject to uncertainty even if the parameters of the underlying dynamic process were known.
no code implementations • 26 Jul 2018 • Jen-Tang Lu, Stefano Pedemonte, Bernardo Bizzo, Sean Doyle, Katherine P. Andriole, Mark H. Michalski, R. Gilberto Gonzalez, Stuart R. Pomerantz
The high prevalence of spinal stenosis results in a large volume of MRI imaging, yet interpretation can be time-consuming with high inter-reader variability even among the most specialized radiologists.
no code implementations • 27 Mar 2018 • Michele Scipioni, Maria F. Santarelli, Luigi Landini, Ciprian Catana, Douglas N. Greve, Julie C. Price, Stefano Pedemonte
We evaluated the proposed algorithm on a simulated dynamic phantom: a bias/variance study confirmed how direct estimates can improve the quality of parametric maps over a post-reconstruction fitting, and showed how the novel sparsity prior can further reduce their variance, without affecting bias.