no code implementations • 3 May 2023 • Ahmed Salih, Zahra Raisi-Estabragh, Ilaria Boscolo Galazzo, Petia Radeva, Steffen E. Petersen, Gloria Menegaz, Karim Lekadir
eXplainable artificial intelligence (XAI) methods have emerged to convert the black box of machine learning (ML) models into a more digestible form.
domain classification
Explainable artificial intelligence
+1
1 code implementation • 4 Apr 2023 • Ahmed Salih, Ilaria Boscolo Galazzo, Zahra Raisi-Estabragh, Steffen E. Petersen, Gloria Menegaz, Petia Radeva
Explainable Artificial Intelligence (XAI) provides tools to help understanding how the machine learning models work and reach a specific outcome.
Explainable artificial intelligence
Explainable Artificial Intelligence (XAI)
no code implementations • 15 Jun 2022 • Jorge Mariscal-Harana, Clint Asher, Vittoria Vergani, Maleeha Rizvi, Louise Keehn, Raymond J. Kim, Robert M. Judd, Steffen E. Petersen, Reza Razavi, Andrew King, Bram Ruijsink, Esther Puyol-Antón
We show that our proposed tool, which combines image pre-processing steps, a domain-generalisable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases.
no code implementations • 23 Jun 2021 • Esther Puyol-Anton, Bram Ruijsink, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Reza Razavi, Andrew P. King
The subject of "fairness" in artificial intelligence (AI) refers to assessing AI algorithms for potential bias based on demographic characteristics such as race and gender, and the development of algorithms to address this bias.
no code implementations • 31 Dec 2020 • Matthew Ng, Fumin Guo, Labonny Biswas, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Graham Wright
Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions.
no code implementations • 21 Jul 2020 • Irem Cetin, Steffen E. Petersen, Sandy Napel, Oscar Camara, Miguel Angel Gonzalez Ballester, Karim Lekadir
Hypertension is a medical condition that is well-established as a risk factor for many major diseases.
no code implementations • 15 Apr 2020 • Edward Ferdian, Avan Suinesiaputra, Kenneth Fung, Nay Aung, Elena Lukaschuk, Ahmet Barutcu, Edd Maclean, Jose Paiva, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alistair A. Young
The fully automatic framework consisted of 1) a convolutional neural network (CNN) for localization, and 2) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice.
no code implementations • 25 Sep 2019 • Irem Cetin, Gerard Sanroma, Steffen E. Petersen, Sandy Napel, Oscar Camara, Miguel-Angel Gonzalez Ballester, Karim Lekadir
In this paper, we present a new approach to identify CVDs from cine-MRI by estimating large pools of radiomic features (statistical, shape and textural features) encoding relevant changes in anatomical and image characteristics due to CVDs.
no code implementations • 3 Sep 2019 • Víctor M. Campello, Carlos Martín-Isla, Cristian Izquierdo, Steffen E. Petersen, Miguel A. González Ballester, Karim Lekadir
Second, a deep learning model is trained for segmentation with different combinations of original, augmented and synthetic sequences.
no code implementations • 20 Aug 2019 • Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert
Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data.
no code implementations • 5 Jul 2019 • Wenjia Bai, Chen Chen, Giacomo Tarroni, Jinming Duan, Florian Guitton, Steffen E. Petersen, Yike Guo, Paul M. Matthews, Daniel Rueckert
In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks.
no code implementations • 2 Jul 2019 • Rahman Attar, Marco Pereanez, Christopher Bowles, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi
We validated our proposed CMR analytics method against a reference cohort containing 500 3D shapes of the cardiac ventricles.
1 code implementation • 2 Jul 2019 • Chen Chen, Wenjia Bai, Rhodri H. Davies, Anish N. Bhuva, Charlotte Manisty, James C. Moon, Nay Aung, Aaron M. Lee, Mihir M. Sanghvi, Kenneth Fung, Jose Miguel Paiva, Steffen E. Petersen, Elena Lukaschuk, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert
We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy.
no code implementations • 15 Feb 2019 • Qiao Zheng, Hervé Delingette, Kenneth Fung, Steffen E. Petersen, Nicholas Ayache
First, with a feature extraction method previously published based on deep learning models, we extract from each case 9 feature values characterizing both the cardiac shape and motion.
no code implementations • 27 Jan 2019 • Robert Robinson, Vanya V. Valindria, Wenjia Bai, Ozan Oktay, Bernhard Kainz, Hideaki Suzuki, Mihir M. Sanghvi, Nay Aung, Jos$é$ Miguel Paiva, Filip Zemrak, Kenneth Fung, Elena Lukaschuk, Aaron M. Lee, Valentina Carapella, Young Jin Kim, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Chris Page, Paul M. Matthews, Daniel Rueckert, Ben Glocker
Methods: To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis.
no code implementations • 10 Jan 2019 • Rahman Attar, Marco Pereanez, Ali Gooya, Xenia Alba, Le Zhang, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi
We present a fully automatic, high throughput image parsing workflow for the analysis of cardiac MR images, and test its performance on the UK Biobank (UKB) cardiac dataset.
no code implementations • 6 Nov 2018 • Le Zhang, Ali Gooya, Marco Pereanez, Bo Dong, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi
Full coverage of the left ventricle (LV), from base to apex, is a basic criterion for CMR image quality and necessary for accurate measurement of cardiac volume and functional assessment.
1 code implementation • 11 Jun 2018 • Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert
Cardiac motion estimation and segmentation play important roles in quantitatively assessing cardiac function and diagnosing cardiovascular diseases.
1 code implementation • 25 Oct 2017 • Wenjia Bai, Matthew Sinclair, Giacomo Tarroni, Ozan Oktay, Martin Rajchl, Ghislain Vaillant, Aaron M. Lee, Nay Aung, Elena Lukaschuk, Mihir M. Sanghvi, Filip Zemrak, Kenneth Fung, Jose Miguel Paiva, Valentina Carapella, Young Jin Kim, Hideaki Suzuki, Bernhard Kainz, Paul M. Matthews, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Ben Glocker, Daniel Rueckert
By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance on par with human experts in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images.
no code implementations • WS 2016 • Georgios P. Spithourakis, Steffen E. Petersen, Sebastian Riedel
In this paper, we investigate how grounded and conditional extensions to standard neural language models can bring improvements in the tasks of word prediction and completion.