no code implementations • IWSLT 2016 • Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Stephan Vogel
This paper describes QCRI’s machine translation systems for the IWSLT 2016 evaluation campaign.
no code implementations • NAACL 2018 • Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Stephan Vogel
We address the problem of simultaneous translation by modifying the Neural MT decoder to operate with dynamically built encoder and attention.
no code implementations • IJCNLP 2017 • Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Stephan Vogel
End-to-end training makes the neural machine translation (NMT) architecture simpler, yet elegant compared to traditional statistical machine translation (SMT).
no code implementations • RANLP 2017 • Preslav Nakov, Stephan Vogel
We explore the idea of automatically crafting a tuning dataset for Statistical Machine Translation (SMT) that makes the hyper-parameters of the SMT system more robust with respect to some specific deficiencies of the parameter tuning algorithms.
1 code implementation • 21 Sep 2017 • Ahmed Ali, Stephan Vogel, Steve Renals
Two hours of audio per dialect were released for development and a further two hours were used for evaluation.
no code implementations • ACL 2017 • Hassan Sajjad, Fahim Dalvi, Nadir Durrani, Ahmed Abdelali, Yonatan Belinkov, Stephan Vogel
Word segmentation plays a pivotal role in improving any Arabic NLP application.
no code implementations • RANLP 2017 • Irina Temnikova, Ahmed Abdelali, Samy Hedaya, Stephan Vogel, Aishah Al Daher
In this article we run an automatic analysis of a corpus of parallel speeches and their human interpretations, and provide the results of manually annotating the human interpreting strategies in a sample of the corpus.
no code implementations • IWSLT 2017 • Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan Belinkov, Stephan Vogel
Model stacking works best when training begins with the furthest out-of-domain data and the model is incrementally fine-tuned with the next furthest domain and so on.
no code implementations • EACL 2017 • Fahim Dalvi, Yifan Zhang, Sameer Khurana, Nadir Durrani, Hassan Sajjad, Ahmed Abdelali, Hamdy Mubarak, Ahmed Ali, Stephan Vogel
This paper presents QCRI{'}s Arabic-to-English live speech translation system.
no code implementations • EACL 2017 • Renars Liepins, Ulrich Germann, Guntis Barzdins, Alex Birch, ra, Steve Renals, Susanne Weber, Peggy van der Kreeft, Herv{\'e} Bourlard, Jo{\~a}o Prieto, Ond{\v{r}}ej Klejch, Peter Bell, Alex Lazaridis, ros, Alfonso Mendes, Sebastian Riedel, Mariana S. C. Almeida, Pedro Balage, Shay B. Cohen, Tomasz Dwojak, Philip N. Garner, Andreas Giefer, Marcin Junczys-Dowmunt, Hina Imran, David Nogueira, Ahmed Ali, Mir, Sebasti{\~a}o a, Andrei Popescu-Belis, Lesly Miculicich Werlen, Nikos Papasarantopoulos, Abiola Obamuyide, Clive Jones, Fahim Dalvi, Andreas Vlachos, Yang Wang, Sibo Tong, Rico Sennrich, Nikolaos Pappas, Shashi Narayan, Marco Damonte, Nadir Durrani, Sameer Khurana, Ahmed Abdelali, Hassan Sajjad, Stephan Vogel, David Sheppey, Chris Hernon, Jeff Mitchell
We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +5
no code implementations • 14 Jan 2017 • Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Stephan Vogel
This paper describes QCRI's machine translation systems for the IWSLT 2016 evaluation campaign.
no code implementations • 9 Oct 2016 • Ahmad Musleh, Nadir Durrani, Irina Temnikova, Preslav Nakov, Stephan Vogel, Osama Alsaad
We present research towards bridging the language gap between migrant workers in Qatar and medical staff.
no code implementations • 18 Jun 2016 • Hassan Sajjad, Nadir Durrani, Francisco Guzman, Preslav Nakov, Ahmed Abdelali, Stephan Vogel, Wael Salloum, Ahmed El Kholy, Nizar Habash
The competition focused on informal dialectal Arabic, as used in SMS, chat, and speech.
no code implementations • LREC 2016 • Irina Temnikova, Wajdi Zaghouani, Stephan Vogel, Nizar Habash
The goal of the cognitive machine translation (MT) evaluation approach is to build classifiers which assign post-editing effort scores to new texts.
no code implementations • LREC 2014 • Ahmed Abdelali, Francisco Guzman, Hassan Sajjad, Stephan Vogel
This paper presents the AMARA corpus of on-line educational content: a new parallel corpus of educational video subtitles, multilingually aligned for 20 languages, i. e. 20 monolingual corpora and 190 parallel corpora.