1 code implementation • 13 Sep 2024 • Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu
Medical imaging analysis faces challenges such as data scarcity, high annotation costs, and privacy concerns.
no code implementations • 18 Jun 2024 • Alex Chen, Nathan Lay, Stephanie Harmon, Kutsev Ozyoruk, Enis Yilmaz, Brad J. Wood, Peter A. Pinto, Peter L. Choyke, Baris Turkbey
Prostate cancer is one of the most prevalent malignancies in the world.
1 code implementation • 7 Jun 2024 • Yufan He, Pengfei Guo, Yucheng Tang, Andriy Myronenko, Vishwesh Nath, Ziyue Xu, Dong Yang, Can Zhao, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu, Wenqi Li
The novel model design and training recipe represent a promising step toward developing a versatile medical image foundation model and will serve as a valuable foundation for CT image analysis.
no code implementations • 8 Feb 2024 • Pouria Yazdian Anari, Fiona Obiezu, Nathan Lay, Fatemeh Dehghani Firouzabadi, Aditi Chaurasia, Mahshid Golagha, Shiva Singh, Fatemeh Homayounieh, Aryan Zahergivar, Stephanie Harmon, Evrim Turkbey, Rabindra Gautam, Kevin Ma, Maria Merino, Elizabeth C. Jones, Mark W. Ball, W. Marston Linehan, Baris Turkbey, Ashkan A. Malayeri
The best primary model was then used to identify tumors in the remaining 861 patients and bounding box coordinates were generated on their scans using the model.
no code implementations • 6 Jan 2023 • Pouria Yazdian Anari, Nathan Lay, Aditi Chaurasia, Nikhil Gopal, Safa Samimi, Stephanie Harmon, Rabindra Gautam, Kevin Ma, Fatemeh Dehghani Firouzabadi, Evrim Turkbey, Maria Merino, Elizabeth C. Jones, Mark W. Ball, W. Marston Linehan, Baris Turkbey, Ashkan A. Malayeri
Our 2D U-Net achieved an average ccRCC lesion detection Area under the curve (AUC) of 0. 88 and DSC scores of 0. 78, 0. 40, and 0. 46 for segmentation of the kidney, cysts, and tumors, respectively.
no code implementations • 12 Mar 2022 • Pengfei Guo, Dong Yang, Ali Hatamizadeh, An Xu, Ziyue Xu, Wenqi Li, Can Zhao, Daguang Xu, Stephanie Harmon, Evrim Turkbey, Baris Turkbey, Bradford Wood, Francesca Patella, Elvira Stellato, Gianpaolo Carrafiello, Vishal M. Patel, Holger R. Roth
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
no code implementations • 20 Apr 2021 • Yingda Xia, Dong Yang, Wenqi Li, Andriy Myronenko, Daguang Xu, Hirofumi Obinata, Hitoshi Mori, Peng An, Stephanie Harmon, Evrim Turkbey, Baris Turkbey, Bradford Wood, Francesca Patella, Elvira Stellato, Gianpaolo Carrafiello, Anna Ierardi, Alan Yuille, Holger Roth
In this work, we design a new data-driven approach, namely Auto-FedAvg, where aggregation weights are dynamically adjusted, depending on data distributions across data silos and the current training progress of the models.
no code implementations • 23 Nov 2020 • Dong Yang, Ziyue Xu, Wenqi Li, Andriy Myronenko, Holger R. Roth, Stephanie Harmon, Sheng Xu, Baris Turkbey, Evrim Turkbey, Xiaosong Wang, Wentao Zhu, Gianpaolo Carrafiello, Francesca Patella, Maurizio Cariati, Hirofumi Obinata, Hitoshi Mori, Kaku Tamura, Peng An, Bradford J. Wood, Daguang Xu
To facilitate CT analysis, recent efforts have focused on computer-aided characterization and diagnosis, which has shown promising results.
1 code implementation • 7 Jun 2019 • Ling Zhang, Xiaosong Wang, Dong Yang, Thomas Sanford, Stephanie Harmon, Baris Turkbey, Holger Roth, Andriy Myronenko, Daguang Xu, Ziyue Xu
We rethink data augmentation for medical 3D images and propose a deep stacked transformations (DST) approach for domain generalization.