no code implementations • 18 Nov 2024 • Harshita Sharma, Valentina Salvatelli, Shaury Srivastav, Kenza Bouzid, Shruthi Bannur, Daniel C. Castro, Maximilian Ilse, Sam Bond-Taylor, Mercy Prasanna Ranjit, Fabian Falck, Fernando Pérez-García, Anton Schwaighofer, Hannah Richardson, Maria Teodora Wetscherek, Stephanie L. Hyland, Javier Alvarez-Valle
Subsequently, building on the architectures of MAIRA, a CXR-specialised model for report generation, we integrate a trainable segmentation tokens extractor that leverages these mask pseudolabels, and employ mask-aware prompting to generate draft radiology reports.
no code implementations • 7 Nov 2024 • Daniel C. Castro, Aurelia Bustos, Shruthi Bannur, Stephanie L. Hyland, Kenza Bouzid, Maria Teodora Wetscherek, Maria Dolores Sánchez-Valverde, Lara Jaques-Pérez, Lourdes Pérez-Rodríguez, Kenji Takeda, José María Salinas, Javier Alvarez-Valle, Joaquín Galant Herrero, Antonio Pertusa
Grounded radiology report generation (GRRG) extends RRG by including the localisation of individual findings on the image.
1 code implementation • 6 Jun 2024 • Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton Schwaighofer, Anja Thieme, Sam Bond-Taylor, Maximilian Ilse, Fernando Pérez-García, Valentina Salvatelli, Harshita Sharma, Felix Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Noel C. F. Codella, Fabian Falck, Ozan Oktay, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarez-Valle, Stephanie L. Hyland
Radiology reporting is a complex task requiring detailed medical image understanding and precise language generation, for which generative multimodal models offer a promising solution.
no code implementations • 8 May 2024 • Anja Thieme, Abhijith Rajamohan, Benjamin Cooper, Heather Groombridge, Robert Simister, Barney Wong, Nicholas Woznitza, Mark Ames Pinnock, Maria Teodora Wetscherek, Cecily Morrison, Hannah Richardson, Fernando Pérez-García, Stephanie L. Hyland, Shruthi Bannur, Daniel C. Castro, Kenza Bouzid, Anton Schwaighofer, Mercy Ranjit, Harshita Sharma, Matthew P. Lungren, Ozan Oktay, Javier Alvarez-Valle, Aditya Nori, Stephen Harris, Joseph Jacob
Nasogastric tubes (NGTs) are feeding tubes that are inserted through the nose into the stomach to deliver nutrition or medication.
no code implementations • 19 Jan 2024 • Fernando Pérez-García, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli, Maximilian Ilse, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Matthew P. Lungren, Maria Wetscherek, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, Ozan Oktay
We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data that obtains similar or greater performance than state-of-the-art biomedical language-supervised models on a diverse range of benchmarks.
no code implementations • 22 Nov 2023 • Stephanie L. Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Mercy Ranjit, Anton Schwaighofer, Fernando Pérez-García, Valentina Salvatelli, Shaury Srivastav, Anja Thieme, Noel Codella, Matthew P. Lungren, Maria Teodora Wetscherek, Ozan Oktay, Javier Alvarez-Valle
We present a radiology-specific multimodal model for the task for generating radiological reports from chest X-rays (CXRs).
no code implementations • 23 Mar 2023 • Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando Pérez-García, Naoto Usuyama, Sheng Zhang, Tristan Naumann, Aditya Nori, Hoifung Poon, Javier Alvarez-Valle, Ozan Oktay, Stephanie L. Hyland
We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on NLI, text summarisation and embedding learning.
no code implementations • 26 May 2022 • Dimitris Spathis, Stephanie L. Hyland
Clinical machine learning models show a significant performance drop when tested in settings not seen during training.
no code implementations • 12 May 2021 • Matthias Hüser, Martin Faltys, Xinrui Lyu, Chris Barber, Stephanie L. Hyland, Tobias M. Merz, Gunnar Rätsch
The development of respiratory failure is common among patients in intensive care units (ICU).
no code implementations • 19 Nov 2020 • Emily Alsentzer, Matthew B. A. McDermott, Fabian Falck, Suproteem K. Sarkar, Subhrajit Roy, Stephanie L. Hyland
A collection of the accepted abstracts for the Machine Learning for Health (ML4H) workshop at NeurIPS 2020.
1 code implementation • 5 Dec 2019 • Stephanie L. Hyland, Shruti Tople
Introducing noise in the training of machine learning systems is a powerful way to protect individual privacy via differential privacy guarantees, but comes at a cost to utility.
no code implementations • 29 Apr 2019 • Stefan G. Stark, Stephanie L. Hyland, Melanie F. Pradier, Kjong Lehmann, Andreas Wicki, Fernando Perez Cruz, Julia E. Vogt, Gunnar Rätsch
To demonstrate the utility of our approach, we perform an association study of clinical features with somatic mutation profiles from 4, 007 cancer patients and their tumors.
no code implementations • 16 Apr 2019 • Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean Bodenham, Karsten Borgwardt, Gunnar Rätsch, Tobias M. Merz
Intensive care clinicians are presented with large quantities of patient information and measurements from a multitude of monitoring systems.
no code implementations • 2 Dec 2018 • Xinrui Lyu, Matthias Hueser, Stephanie L. Hyland, George Zerveas, Gunnar Raetsch
In this work, we investigate unsupervised representation learning on medical time series, which bears the promise of leveraging copious amounts of existing unlabeled data in order to eventually assist clinical decision making.
6 code implementations • ICLR 2018 • Cristóbal Esteban, Stephanie L. Hyland, Gunnar Rätsch
We also describe novel evaluation methods for GANs, where we generate a synthetic labelled training dataset, and evaluate on a real test set the performance of a model trained on the synthetic data, and vice-versa.
1 code implementation • 1 Dec 2016 • Paulina Grnarova, Florian Schmidt, Stephanie L. Hyland, Carsten Eickhoff
We present an automatic mortality prediction scheme based on the unstructured textual content of clinical notes.
1 code implementation • 17 Jul 2016 • Stephanie L. Hyland, Gunnar Rätsch
A major challenge in the training of recurrent neural networks is the so-called vanishing or exploding gradient problem.
no code implementations • 10 Feb 2016 • Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch
Identifying relationships between concepts is a key aspect of scientific knowledge synthesis.
no code implementations • 1 Oct 2015 • Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch
We propose a generative model which integrates evidence from diverse data sources, enabling the sharing of semantic information.