no code implementations • WS 2020 • Manirupa Das, Juanxi Li, Eric Fosler-Lussier, Simon Lin, Steve Rust, Yungui Huang, Rajiv Ramnath
Novel contexts, comprising a set of terms referring to one or more concepts, may often arise in complex querying scenarios such as in evidence-based medicine (EBM) involving biomedical literature.
no code implementations • 11 Nov 2019 • Manirupa Das, Juanxi Li, Eric Fosler-Lussier, Simon Lin, Soheil Moosavinasab, Steve Rust, Yungui Huang, Rajiv Ramnath
Our approach to generate document encodings employing our sequence-to-set models for inference of semantic tags, gives to the best of our knowledge, the state-of-the-art for both, the unsupervised query expansion task for the TREC CDS 2016 challenge dataset when evaluated on an Okapi BM25--based document retrieval system; and also over the MLTM baseline (Soleimani et al, 2016), for both supervised and semi-supervised multi-label prediction tasks on the del. icio. us and Ohsumed datasets.
no code implementations • WS 2018 • Manirupa Das, Eric Fosler-Lussier, Simon Lin, Soheil Moosavinasab, David Chen, Steve Rust, Yungui Huang, Rajiv Ramnath
In this work, we develop a novel, completely unsupervised, neural language model-based document ranking approach to semantic tagging of documents, using the document to be tagged as a query into the GLM to retrieve candidate phrases from top-ranked related documents, thus associating every document with novel related concepts extracted from the text.