Search Results for author: Sung-Kyun Kim

Found 4 papers, 0 papers with code

Risk-aware Meta-level Decision Making for Exploration Under Uncertainty

no code implementations12 Sep 2022 Joshua Ott, Sung-Kyun Kim, Amanda Bouman, Oriana Peltzer, Mamoru Sobue, Harrison Delecki, Mykel J. Kochenderfer, Joel Burdick, Ali-akbar Agha-mohammadi

Robotic exploration of unknown environments is fundamentally a problem of decision making under uncertainty where the robot must account for uncertainty in sensor measurements, localization, action execution, as well as many other factors.

Decision Making Decision Making Under Uncertainty

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

no code implementations21 Mar 2021 Ali Agha, Kyohei Otsu, Benjamin Morrell, David D. Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Fadhil Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry, Michael Wolf, Andrea Tagliabue, Tiago Stegun Vaquero, Matteo Palieri, Scott Tepsuporn, Yun Chang, Arash Kalantari, Fernando Chavez, Brett Lopez, Nobuhiro Funabiki, Gregory Miles, Thomas Touma, Alessandro Buscicchio, Jesus Tordesillas, Nikhilesh Alatur, Jeremy Nash, William Walsh, Sunggoo Jung, Hanseob Lee, Christoforos Kanellakis, John Mayo, Scott Harper, Marcel Kaufmann, Anushri Dixit, Gustavo Correa, Carlyn Lee, Jay Gao, Gene Merewether, Jairo Maldonado-Contreras, Gautam Salhotra, Maira Saboia Da Silva, Benjamin Ramtoula, Yuki Kubo, Seyed Fakoorian, Alexander Hatteland, Taeyeon Kim, Tara Bartlett, Alex Stephens, Leon Kim, Chuck Bergh, Eric Heiden, Thomas Lew, Abhishek Cauligi, Tristan Heywood, Andrew Kramer, Henry A. Leopold, Chris Choi, Shreyansh Daftry, Olivier Toupet, Inhwan Wee, Abhishek Thakur, Micah Feras, Giovanni Beltrame, George Nikolakopoulos, David Shim, Luca Carlone, Joel Burdick

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge.

Decision Making Motion Planning

PLGRIM: Hierarchical Value Learning for Large-scale Exploration in Unknown Environments

no code implementations10 Feb 2021 Sung-Kyun Kim, Amanda Bouman, Gautam Salhotra, David D. Fan, Kyohei Otsu, Joel Burdick, Ali-akbar Agha-mohammadi

In order for an autonomous robot to efficiently explore an unknown environment, it must account for uncertainty in sensor measurements, hazard assessment, localization, and motion execution.

Robotics

Cannot find the paper you are looking for? You can Submit a new open access paper.