Search Results for author: Sungsoo Ahn

Found 22 papers, 10 papers with code

Imitating Graph-Based Planning with Goal-Conditioned Policies

1 code implementation20 Mar 2023 Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, Jinwoo Shin

Recently, graph-based planning algorithms have gained much attention to solve goal-conditioned reinforcement learning (RL) tasks: they provide a sequence of subgoals to reach the target-goal, and the agents learn to execute subgoal-conditioned policies.

Reinforcement Learning (RL)

A Closer Look at the Intervention Procedure of Concept Bottleneck Models

1 code implementation28 Feb 2023 Sungbin Shin, Yohan Jo, Sungsoo Ahn, Namhoon Lee

Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts.

Fairness

Diffusion Probabilistic Models for Graph-Structured Prediction

1 code implementation21 Feb 2023 Hyosoon Jang, Sangwoo Mo, Sungsoo Ahn

We also propose a variational expectation maximization algorithm to train our DPM in the semi-supervised setting.

Node Classification Structured Prediction

Substructure-Atom Cross Attention for Molecular Representation Learning

no code implementations15 Oct 2022 Jiye Kim, Seungbeom Lee, Dongwoo Kim, Sungsoo Ahn, Jaesik Park

Designing a neural network architecture for molecular representation is crucial for AI-driven drug discovery and molecule design.

Drug Discovery Molecular Property Prediction +1

Learning Debiased Classifier with Biased Committee

1 code implementation22 Jun 2022 Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, Suha Kwak

We propose a new method for training debiased classifiers with no spurious attribute label.

RoMA: Robust Model Adaptation for Offline Model-based Optimization

no code implementations NeurIPS 2021 Sihyun Yu, Sungsoo Ahn, Le Song, Jinwoo Shin

We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.

What Makes Better Augmentation Strategies? Augment Difficult but Not too Different

no code implementations ICLR 2022 Jaehyung Kim, Dongyeop Kang, Sungsoo Ahn, Jinwoo Shin

Remarkably, our method is more effective on the challenging low-data and class-imbalanced regimes, and the learned augmentation policy is well-transferable to the different tasks and models.

Data Augmentation Semantic Similarity +3

Spanning Tree-based Graph Generation for Molecules

no code implementations ICLR 2022 Sungsoo Ahn, Binghong Chen, Tianzhe Wang, Le Song

In this paper, we explore the problem of generating molecules using deep neural networks, which has recently gained much interest in chemistry.

Graph Generation Molecular Graph Generation

Abstract Reasoning via Logic-guided Generation

no code implementations22 Jul 2021 Sihyun Yu, Sangwoo Mo, Sungsoo Ahn, Jinwoo Shin

Abstract reasoning, i. e., inferring complicated patterns from given observations, is a central building block of artificial general intelligence.

Self-Improved Retrosynthetic Planning

1 code implementation9 Jun 2021 Junsu Kim, Sungsoo Ahn, Hankook Lee, Jinwoo Shin

Our main idea is based on a self-improving procedure that trains the model to imitate successful trajectories found by itself.

Multi-step retrosynthesis

RetCL: A Selection-based Approach for Retrosynthesis via Contrastive Learning

no code implementations3 May 2021 Hankook Lee, Sungsoo Ahn, Seung-Woo Seo, You Young Song, Eunho Yang, Sung-Ju Hwang, Jinwoo Shin

Retrosynthesis, of which the goal is to find a set of reactants for synthesizing a target product, is an emerging research area of deep learning.

Contrastive Learning

Layer-adaptive sparsity for the Magnitude-based Pruning

1 code implementation ICLR 2021 Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, Jinwoo Shin

Recent discoveries on neural network pruning reveal that, with a carefully chosen layerwise sparsity, a simple magnitude-based pruning achieves state-of-the-art tradeoff between sparsity and performance.

Image Classification Network Pruning

Learning from Failure: Training Debiased Classifier from Biased Classifier

2 code implementations6 Jul 2020 Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, Jinwoo Shin

Neural networks often learn to make predictions that overly rely on spurious correlation existing in the dataset, which causes the model to be biased.

Action Recognition Facial Attribute Classification +1

Guiding Deep Molecular Optimization with Genetic Exploration

2 code implementations NeurIPS 2020 Sungsoo Ahn, Junsu Kim, Hankook Lee, Jinwoo Shin

De novo molecular design attempts to search over the chemical space for molecules with the desired property.

Imitation Learning

Learning What to Defer for Maximum Independent Sets

1 code implementation ICML 2020 Sungsoo Ahn, Younggyo Seo, Jinwoo Shin

Designing efficient algorithms for combinatorial optimization appears ubiquitously in various scientific fields.

Combinatorial Optimization

Deep Auto-Deferring Policy for Combinatorial Optimization

no code implementations25 Sep 2019 Sungsoo Ahn, Younggyo Seo, Jinwoo Shin

Designing efficient algorithms for combinatorial optimization appears ubiquitously in various scientific fields.

Combinatorial Optimization

Variational Information Distillation for Knowledge Transfer

2 code implementations CVPR 2019 Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, Zhenwen Dai

We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10.

Knowledge Distillation Transfer Learning

Gauged Mini-Bucket Elimination for Approximate Inference

no code implementations5 Jan 2018 Sungsoo Ahn, Michael Chertkov, Jinwoo Shin, Adrian Weller

Recently, so-called gauge transformations were used to improve variational lower bounds on $Z$.

Gauging Variational Inference

no code implementations NeurIPS 2017 Sungsoo Ahn, Michael Chertkov, Jinwoo Shin

Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM).

Variational Inference

MCMC assisted by Belief Propagation

no code implementations29 May 2016 Sungsoo Ahn, Michael Chertkov, Jinwoo Shin

Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series.

Minimum Weight Perfect Matching via Blossom Belief Propagation

no code implementations NeurIPS 2015 Sungsoo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin

Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM).

Combinatorial Optimization

Cannot find the paper you are looking for? You can Submit a new open access paper.