no code implementations • 6 Nov 2023 • Chenyu Gao, Michael E. Kim, Ho Hin Lee, Qi Yang, Nazirah Mohd Khairi, Praitayini Kanakaraj, Nancy R. Newlin, Derek B. Archer, Angela L. Jefferson, Warren D. Taylor, Brian D. Boyd, Lori L. Beason-Held, Susan M. Resnick, The BIOCARD Study Team, Yuankai Huo, Katherine D. Van Schaik, Kurt G. Schilling, Daniel Moyer, Ivana Išgum, Bennett A. Landman
We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.
no code implementations • 13 Apr 2023 • Peiyu Duan, Yuan Xue, Shuo Han, Lianrui Zuo, Aaron Carass, Caitlyn Bernhard, Savannah Hays, Peter A. Calabresi, Susan M. Resnick, James S. Duncan, Jerry L. Prince
The meninges, located between the skull and brain, are composed of three membrane layers: the pia, the arachnoid, and the dura.
1 code implementation • 25 Jan 2023 • Zhijian Yang, Junhao Wen, Ahmed Abdulkadir, Yuhan Cui, Guray Erus, Elizabeth Mamourian, Randa Melhem, Dhivya Srinivasan, Sindhuja T. Govindarajan, Jiong Chen, Mohamad Habes, Colin L. Masters, Paul Maruff, Jurgen Fripp, Luigi Ferrucci, Marilyn S. Albert, Sterling C. Johnson, John C. Morris, Pamela Lamontagne, Daniel S. Marcus, Tammie L. S. Benzinger, David A. Wolk, Li Shen, Jingxuan Bao, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases.
no code implementations • 12 Dec 2022 • Lianrui Zuo, Yihao Liu, Yuan Xue, Blake E. Dewey, Samuel W. Remedios, Savannah P. Hays, Murat Bilgel, Ellen M. Mowry, Scott D. Newsome, Peter A. Calabresi, Susan M. Resnick, Jerry L. Prince, Aaron Carass
Furthermore, HACA3 is also robust to imaging artifacts and can be trained and applied to any set of MR contrasts.
no code implementations • 10 May 2022 • Lianrui Zuo, Yihao Liu, Yuan Xue, Shuo Han, Murat Bilgel, Susan M. Resnick, Jerry L. Prince, Aaron Carass
Disentangling anatomical and contrast information from medical images has gained attention recently, demonstrating benefits for various image analysis tasks.
1 code implementation • 20 Oct 2021 • Junhao Wen, Cynthia H. Y. Fu, Duygu Tosun, Yogasudha Veturi, Zhijian Yang, Ahmed Abdulkadir, Elizabeth Mamourian, Dhivya Srinivasan, Jingxuan Bao, Guray Erus, Haochang Shou, Mohamad Habes, Jimit Doshi, Erdem Varol, Scott R Mackin, Aristeidis Sotiras, Yong Fan, Andrew J. Saykin, Yvette I. Sheline, Li Shen, Marylyn D. Ritchie, David A. Wolk, Marilyn Albert, Susan M. Resnick, Christos Davatzikos
We sought to delineate, cross-sectionally and longitudinally, disease-related heterogeneity in LLD linked to neuroanatomy, cognitive functioning, clinical symptomatology, and genetic profiles.
no code implementations • 8 Sep 2021 • Gyujoon Hwang, Ahmed Abdulkadir, Guray Erus, Mohamad Habes, Raymond Pomponio, Haochang Shou, Jimit Doshi, Elizabeth Mamourian, Tanweer Rashid, Murat Bilgel, Yong Fan, Aristeidis Sotiras, Dhivya Srinivasan, John C. Morris, Daniel Marcus, Marilyn S. Albert, Nick R. Bryan, Susan M. Resnick, Ilya M. Nasrallah, Christos Davatzikos, David A. Wolk
First, a subset of AD patients and CN adults were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-AD1 (classification of CN versus AD).
no code implementations • 24 Feb 2021 • Zhijian Yang, Ilya M. Nasrallah, Haochang Shou, Junhao Wen, Jimit Doshi, Mohamad Habes, Guray Erus, Ahmed Abdulkadir, Susan M. Resnick, David Wolk, Christos Davatzikos
Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis.
no code implementations • 11 Oct 2020 • Vishnu M. Bashyam, Jimit Doshi, Guray Erus, Dhivya Srinivasan, Ahmed Abdulkadir, Mohamad Habes, Yong Fan, Colin L. Masters, Paul Maruff, Chuanjun Zhuo, Henry Völzke, Sterling C. Johnson, Jurgen Fripp, Nikolaos Koutsouleris, Theodore D. Satterthwaite, Daniel H. Wolf, Raquel E. Gur, Ruben C. Gur, John C. Morris, Marilyn S. Albert, Hans J. Grabe, Susan M. Resnick, R. Nick Bryan, David A. Wolk, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine.
2 code implementations • 28 Mar 2019 • Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman
To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location.
no code implementations • 6 Jun 2018 • Yuankai Huo, Katherine Swett, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman
By indexing the dictionary, the whole brain probabilistic atlases adapt to each new subject quickly and can be used as spatial priors for visualization and processing.
2 code implementations • 1 Jun 2018 • Yuankai Huo, Zhoubing Xu, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman
Whole brain segmentation on a structural magnetic resonance imaging (MRI) is essential in non-invasive investigation for neuroanatomy.
no code implementations • 5 Jan 2018 • Camilo Bermudez, Andrew J. Plassard, Larry T. Davis, Allen T. Newton, Susan M. Resnick, Bennett A. Landman
Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5.
no code implementations • 29 Aug 2017 • Yuankai Huo, Susan M. Resnick, Bennett A. Landman
(2) The proposed algorithm is a longitudinal generalization of a lead-ing joint label fusion method (JLF) that has proven adaptable to a wide variety of applications.