1 code implementation • 2 Apr 2024 • Akshay Dudhane, Omkar Thawakar, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang
All-in-one image restoration tackles different types of degradations with a unified model instead of having task-specific, non-generic models for each degradation.
1 code implementation • 21 Mar 2024 • Yuning Cui, Syed Waqas Zamir, Salman Khan, Alois Knoll, Mubarak Shah, Fahad Shahbaz Khan
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands, thereby requiring different treatments for each restoration task.
1 code implementation • 22 Jun 2023 • Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan
We present a prompt-based learning approach, PromptIR, for All-In-One image restoration that can effectively restore images from various types and levels of degradation.
1 code implementation • CVPR 2023 • Nancy Mehta, Akshay Dudhane, Subrahmanyam Murala, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan
Burst image processing is becoming increasingly popular in recent years.
2 code implementations • CVPR 2023 • Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang
Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions.
7 code implementations • 21 Jun 2022 • Muhammad Maaz, Abdelrahman Shaker, Hisham Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muhammad Anwer, Fahad Shahbaz Khan
Our EdgeNeXt model with 1. 3M parameters achieves 71. 2% top-1 accuracy on ImageNet-1K, outperforming MobileViT with an absolute gain of 2. 2% with 28% reduction in FLOPs.
Ranked #29 on Semantic Segmentation on PASCAL VOC 2012 test
2 code implementations • 11 May 2022 • Yawei Li, Kai Zhang, Radu Timofte, Luc van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, Jingyi Chen, Qingrui Han, Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Yu Qiao, Chao Dong, Long Sun, Jinshan Pan, Yi Zhu, Zhikai Zong, Xiaoxiao Liu, Zheng Hui, Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Yanbo Wang, Xiaozhong Ji, Chuming Lin, Donghao Luo, Ying Tai, Chengjie Wang, Zhizhong Zhang, Yuan Xie, Shen Cheng, Ziwei Luo, Lei Yu, Zhihong Wen, Qi Wu1, Youwei Li, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Yuanfei Huang, Meiguang Jin, Hua Huang, Jing Liu, Xinjian Zhang, Yan Wang, Lingshun Long, Gen Li, Yuanfan Zhang, Zuowei Cao, Lei Sun, Panaetov Alexander, Yucong Wang, Minjie Cai, Li Wang, Lu Tian, Zheyuan Wang, Hongbing Ma, Jie Liu, Chao Chen, Yidong Cai, Jie Tang, Gangshan Wu, Weiran Wang, Shirui Huang, Honglei Lu, Huan Liu, Keyan Wang, Jun Chen, Shi Chen, Yuchun Miao, Zimo Huang, Lefei Zhang, Mustafa Ayazoğlu, Wei Xiong, Chengyi Xiong, Fei Wang, Hao Li, Ruimian Wen, Zhijing Yang, Wenbin Zou, Weixin Zheng, Tian Ye, Yuncheng Zhang, Xiangzhen Kong, Aditya Arora, Syed Waqas Zamir, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Dandan Gaoand Dengwen Zhouand Qian Ning, Jingzhu Tang, Han Huang, YuFei Wang, Zhangheng Peng, Haobo Li, Wenxue Guan, Shenghua Gong, Xin Li, Jun Liu, Wanjun Wang, Dengwen Zhou, Kun Zeng, Hanjiang Lin, Xinyu Chen, Jinsheng Fang
The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29. 00dB on DIV2K validation set.
1 code implementation • 19 Apr 2022 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
In the former case, spatial details are preserved but the contextual information cannot be precisely encoded.
1 code implementation • 24 Jan 2022 • Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, Huazhu Fu
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators.
11 code implementations • CVPR 2022 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks.
Ranked #1 on Grayscale Image Denoising on Urban100 sigma15
1 code implementation • CVPR 2022 • Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang
Our central idea is to create a set of pseudo-burst features that combine complementary information from all the input burst frames to seamlessly exchange information.
Ranked #4 on Burst Image Super-Resolution on BurstSR
8 code implementations • CVPR 2021 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features.
Ranked #3 on Spectral Reconstruction on ARAD-1K
no code implementations • 4 Jan 2021 • Aditya Arora, Muhammad Haris, Syed Waqas Zamir, Munawar Hayat, Fahad Shahbaz Khan, Ling Shao, Ming-Hsuan Yang
These contexts can be crucial towards inferring several image enhancement tasks, e. g., local and global contrast, brightness and color corrections; which requires cues from both local and global spatial extent.
no code implementations • 4 Jan 2021 • Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems.
2 code implementations • 19 Oct 2020 • Nasir Hayat, Munawar Hayat, Shafin Rahman, Salman Khan, Syed Waqas Zamir, Fahad Shahbaz Khan
The existing zero-shot detection approaches project visual features to the semantic domain for seen objects, hoping to map unseen objects to their corresponding semantics during inference.
Ranked #1 on Zero-Shot Object Detection on ImageNet Detection
no code implementations • 25 Sep 2020 • Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, WangMeng Zuo, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Tangxin Xie, Liang Cao, Yan Zou, Yi Shen, Jialiang Zhang, Yu Jia, Kaihua Cheng, Chenhuan Wu, Yue Lin, Cen Liu, Yunbo Peng, Xueyi Zou, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Tongtong Zhao, Shanshan Zhao, Yoseob Han, Byung-Hoon Kim, JaeHyun Baek, HaoNing Wu, Dejia Xu, Bo Zhou, Wei Guan, Xiaobo Li, Chen Ye, Hao Li, Yukai Shi, Zhijing Yang, Xiaojun Yang, Haoyu Zhong, Xin Li, Xin Jin, Yaojun Wu, Yingxue Pang, Sen Liu, Zhi-Song Liu, Li-Wen Wang, Chu-Tak Li, Marie-Paule Cani, Wan-Chi Siu, Yuanbo Zhou, Rao Muhammad Umer, Christian Micheloni, Xiaofeng Cong, Rajat Gupta, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Feras Almasri, Thomas Vandamme, Olivier Debeir
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020.
8 code implementations • CVPR 2020 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline.
Ranked #11 on Image Denoising on DND (using extra training data)
12 code implementations • ECCV 2020 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing.
Ranked #5 on Spectral Reconstruction on ARAD-1K
3 code implementations • 30 May 2019 • Syed Waqas Zamir, Aditya Arora, Akshita Gupta, Salman Khan, Guolei Sun, Fahad Shahbaz Khan, Fan Zhu, Ling Shao, Gui-Song Xia, Xiang Bai
Compared to existing small-scale aerial image based instance segmentation datasets, iSAID contains 15$\times$ the number of object categories and 5$\times$ the number of instances.
Ranked #1 on Object Detection on iSAID
no code implementations • 11 Apr 2019 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Fahad Shahbaz Khan, Ling Shao
In low-light conditions, a conventional camera imaging pipeline produces sub-optimal images that are usually dark and noisy due to a low photon count and low signal-to-noise ratio (SNR).