no code implementations • 5 Nov 2021 • Ian A. Palmer, T. Nathan Mundhenk, Brian Gallagher, Yong Han
It is common in computer vision to employ an explainable AI saliency map to tell one what parts of an image are important to the network's decision.
2 code implementations • 29 Oct 2021 • T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Faissol, Brenden K. Petersen
Symbolic regression is the process of identifying mathematical expressions that fit observed output from a black-box process.
1 code implementation • 19 Jul 2021 • Mikel Landajuela Larma, Brenden K. Petersen, Soo K. Kim, Claudio P. Santiago, Ruben Glatt, T. Nathan Mundhenk, Jacob F. Pettit, Daniel M. Faissol
Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols.
1 code implementation • ICLR 2021 • Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio P. Santiago, Soo K. Kim, Joanne T. Kim
Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence.
1 code implementation • 26 Nov 2019 • T. Nathan Mundhenk, Barry Y. Chen, Gerald Friedland
This provides an interesting comparison of scale information contributions within the network not provided by other saliency map methods.
no code implementations • CVPR 2018 • T. Nathan Mundhenk, Daniel Ho, Barry Y. Chen
We develop a set of methods to improve on the results of self-supervised learning using context.
no code implementations • 14 Sep 2016 • T. Nathan Mundhenk, Goran Konjevod, Wesam A. Sakla, Kofi Boakye
It would be easy to train this method to count other kinds of objects and counting over new scenes requires no extra set up or assumptions about object locations.
Ranked #9 on Object Counting on CARPK