no code implementations • 25 Mar 2025 • Ibrahim Said Ahmad, Shiran Dudy, Tadesse Destaw Belay, Idris Abdulmumin, Seid Muhie Yimam, Shamsuddeen Hassan Muhammad, Kenneth Church
In this work, we present a cross-linguistic analysis of emotion expression in 15 African languages.
no code implementations • 24 Mar 2025 • Tadesse Destaw Belay, Dawit Ketema Gete, Abinew Ali Ayele, Olga Kolesnikova, Grigori Sidorov, Seid Muhie Yimam
As users express different emotions simultaneously in a single instance, annotating emotions in a multilabel setting such as the EthioEmo (Belay et al., 2025) dataset effectively captures this dynamic.
no code implementations • 24 Mar 2025 • Tadesse Destaw Belay, Israel Abebe Azime, Ibrahim Said Ahmad, Idris Abdulmumin, Abinew Ali Ayele, Shamsuddeen Hassan Muhammad, Seid Muhie Yimam
We explore a thorough analysis of domain and task adaptive continual pretraining approaches for low-resource African languages and a promising result is shown for the evaluated tasks.
no code implementations • 24 Mar 2025 • Dawit Ketema Gete, Bedru Yimam Ahmed, Tadesse Destaw Belay, Yohannes Ayana Ejigu, Sukairaj Hafiz Imam, Alemu Belay Tessema, Mohammed Oumer Adem, Tadesse Amare Belay, Robert Geislinger, Umma Aliyu Musa, Martin Semmann, Shamsuddeen Hassan Muhammad, Henning Schreiber, Seid Muhie Yimam
Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 12 Mar 2025 • Tadesse Destaw Belay, Ahmed Haj Ahmed, Alvin Grissom II, Iqra Ameer, Grigori Sidorov, Olga Kolesnikova, Seid Muhie Yimam
We use this benchmark to evaluate several state-of-the-art LLMs on culture-aware emotion prediction and sentiment analysis tasks.
1 code implementation • 10 Mar 2025 • Shamsuddeen Hassan Muhammad, Nedjma Ousidhoum, Idris Abdulmumin, Seid Muhie Yimam, Jan Philip Wahle, Terry Ruas, Meriem Beloucif, Christine de Kock, Tadesse Destaw Belay, Ibrahim Said Ahmad, Nirmal Surange, Daniela Teodorescu, David Ifeoluwa Adelani, Alham Fikri Aji, Felermino Ali, Vladimir Araujo, Abinew Ali Ayele, Oana Ignat, Alexander Panchenko, Yi Zhou, Saif M. Mohammad
The data instances are multi-labeled into six emotional classes, with additional datasets in 11 languages annotated for emotion intensity.
1 code implementation • 14 Jan 2025 • Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Abinew Ali Ayele, David Ifeoluwa Adelani, Ibrahim Said Ahmad, Saminu Mohammad Aliyu, Nelson Odhiambo Onyango, Lilian D. A. Wanzare, Samuel Rutunda, Lukman Jibril Aliyu, Esubalew Alemneh, Oumaima Hourrane, Hagos Tesfahun Gebremichael, Elyas Abdi Ismail, Meriem Beloucif, Ebrahim Chekol Jibril, Andiswa Bukula, Rooweither Mabuya, Salomey Osei, Abigail Oppong, Tadesse Destaw Belay, Tadesse Kebede Guge, Tesfa Tegegne Asfaw, Chiamaka Ijeoma Chukwuneke, Paul Röttger, Seid Muhie Yimam, Nedjma Ousidhoum
These limitations are mainly due to the lack of high-quality data in the local languages and the failure to include local communities in the collection, annotation, and moderation processes.
no code implementations • 17 Dec 2024 • Tadesse Destaw Belay, Israel Abebe Azime, Abinew Ali Ayele, Grigori Sidorov, Dietrich Klakow, Philipp Slusallek, Olga Kolesnikova, Seid Muhie Yimam
The results show that accurate multi-label emotion classification is still insufficient even for high-resource languages such as English, and there is a large gap between the performance of high-resource and low-resource languages.
no code implementations • 7 Nov 2024 • Israel Abebe Azime, Atnafu Lambebo Tonja, Tadesse Destaw Belay, Yonas Chanie, Bontu Fufa Balcha, Negasi Haile Abadi, Henok Biadglign Ademtew, Mulubrhan Abebe Nerea, Debela Desalegn Yadeta, Derartu Dagne Geremew, Assefa Atsbiha tesfau, Philipp Slusallek, Thamar Solorio, Dietrich Klakow
In this work, we explore LLM evaluation challenges for low-resource language understanding and introduce ProverbEval, LLM evaluation benchmark for low-resource languages based on proverbs to focus on low-resource language understanding in culture-specific scenarios.
no code implementations • 20 Mar 2024 • Atnafu Lambebo Tonja, Israel Abebe Azime, Tadesse Destaw Belay, Mesay Gemeda Yigezu, Moges Ahmed Mehamed, Abinew Ali Ayele, Ebrahim Chekol Jibril, Michael Melese Woldeyohannis, Olga Kolesnikova, Philipp Slusallek, Dietrich Klakow, Shengwu Xiong, Seid Muhie Yimam
We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models.
no code implementations • 12 Feb 2024 • Israel Abebe Azime, Atnafu Lambebo Tonja, Tadesse Destaw Belay, Mitiku Yohannes Fuge, Aman Kassahun Wassie, Eyasu Shiferaw Jada, Yonas Chanie, Walelign Tewabe Sewunetie, Seid Muhie Yimam
We compile an Amharic instruction fine-tuning dataset and fine-tuned LLaMA-2-Amharic model.
1 code implementation • 25 Mar 2023 • Atnafu Lambebo Tonja, Tadesse Destaw Belay, Israel Abebe Azime, Abinew Ali Ayele, Moges Ahmed Mehamed, Olga Kolesnikova, Seid Muhie Yimam
This survey delves into the current state of natural language processing (NLP) for four Ethiopian languages: Amharic, Afaan Oromo, Tigrinya, and Wolaytta.
2 code implementations • 27 Oct 2022 • Tadesse Destaw Belay, Atnafu Lambebo Tonja, Olga Kolesnikova, Seid Muhie Yimam, Abinew Ali Ayele, Silesh Bogale Haile, Grigori Sidorov, Alexander Gelbukh
Machine translation (MT) is one of the main tasks in natural language processing whose objective is to translate texts automatically from one natural language to another.