1 code implementation • 19 Apr 2023 • David Ifeoluwa Adelani, Marek Masiak, Israel Abebe Azime, Jesujoba Alabi, Atnafu Lambebo Tonja, Christine Mwase, Odunayo Ogundepo, Bonaventure F. P. Dossou, Akintunde Oladipo, Doreen Nixdorf, Chris Chinenye Emezue, sana al-azzawi, Blessing Sibanda, Davis David, Lolwethu Ndolela, Jonathan Mukiibi, Tunde Ajayi, Tatiana Moteu, Brian Odhiambo, Abraham Owodunni, Nnaemeka Obiefuna, Muhidin Mohamed, Shamsuddeen Hassan Muhammad, Teshome Mulugeta Ababu, Saheed Abdullahi Salahudeen, Mesay Gemeda Yigezu, Tajuddeen Gwadabe, Idris Abdulmumin, Mahlet Taye, Oluwabusayo Awoyomi, Iyanuoluwa Shode, Tolulope Adelani, Habiba Abdulganiyu, Abdul-Hakeem Omotayo, Adetola Adeeko, Abeeb Afolabi, Anuoluwapo Aremu, Olanrewaju Samuel, Clemencia Siro, Wangari Kimotho, Onyekachi Ogbu, Chinedu Mbonu, Chiamaka Chukwuneke, Samuel Fanijo, Jessica Ojo, Oyinkansola Awosan, Tadesse Kebede, Toadoum Sari Sakayo, Pamela Nyatsine, Freedmore Sidume, Oreen Yousuf, Mardiyyah Oduwole, Tshinu Tshinu, Ussen Kimanuka, Thina Diko, Siyanda Nxakama, Sinodos Nigusse, Abdulmejid Johar, Shafie Mohamed, Fuad Mire Hassan, Moges Ahmed Mehamed, Evrard Ngabire, Jules Jules, Ivan Ssenkungu, Pontus Stenetorp
Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API).