no code implementations • 18 Feb 2025 • Taedong Yun, Eric Yang, Mustafa Safdari, Jong Ha Lee, Vaishnavi Vinod Kumar, S. Sara Mahdavi, Jonathan Amar, Derek Peyton, Reut Aharony, Andreas Michaelides, Logan Schneider, Isaac Galatzer-Levy, Yugang Jia, John Canny, Arthur Gretton, Maja Matarić
The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent.
no code implementations • 17 Jul 2023 • Taedong Yun
High-dimensional clinical data have become invaluable resources for genetic studies, due to their accessibility in biobank-scale datasets and the development of high performance modeling techniques especially using deep learning.
1 code implementation • NeurIPS 2021 • Steve Yadlowsky, Taedong Yun, Cory McLean, Alexander D'Amour
The key insight of SLOE is that the Sur and Cand\`es (2019) correction can be reparameterized in terms of the \emph{corrupted signal strength}, which is only a function of the estimated parameters $\widehat \beta$.
no code implementations • 6 Nov 2020 • Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley
Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains.