1 code implementation • COLING 2022 • Danfeng Guo, Arpit Gupta, Sanchit Agarwal, Jiun-Yu Kao, Shuyang Gao, Arijit Biswas, Chien-Wei Lin, Tagyoung Chung, Mohit Bansal
Learning from multimodal data has become a popular research topic in recent years.
no code implementations • 11 Jun 2024 • Haw-Shiuan Chang, Nanyun Peng, Mohit Bansal, Anil Ramakrishna, Tagyoung Chung
If a LLM's entropy is higher than the asymptotic entropy (i. e., the LLM is more uncertain than it should be), the THF model predicts a high hallucination hazard, which leads to a lower p threshold in REAL sampling.
no code implementations • 13 Oct 2023 • Mingyu Derek Ma, Jiun-Yu Kao, Arpit Gupta, Yu-Hsiang Lin, Wenbo Zhao, Tagyoung Chung, Wei Wang, Kai-Wei Chang, Nanyun Peng
Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance.
1 code implementation • 20 Jun 2023 • Sidi Lu, Wenbo Zhao, Chenyang Tao, Arpit Gupta, Shanchan Wu, Tagyoung Chung, Nanyun Peng
NeurAlly-Decomposed Oracle (NADO) is a powerful approach for controllable generation with large language models.
1 code implementation • 30 May 2023 • Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Gunnar Sigurdsson, Chenyang Tao, Wenbo Zhao, YiWen Chen, Tagyoung Chung, Jing Huang, Nanyun Peng
Automatic melody-to-lyric generation is a task in which song lyrics are generated to go with a given melody.
no code implementations • 12 May 2023 • Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Gunnar Sigurdsson, Chenyang Tao, Wenbo Zhao, Tagyoung Chung, Jing Huang, Nanyun Peng
At inference time, we leverage the crucial alignments between melody and lyrics and compile the given melody into constraints to guide the generation process.
no code implementations • 26 Jan 2023 • Mingyu Derek Ma, Jiun-Yu Kao, Shuyang Gao, Arpit Gupta, Di Jin, Tagyoung Chung, Nanyun Peng
Dialogue state tracking (DST) is an important step in dialogue management to keep track of users' beliefs.
1 code implementation • 24 Oct 2022 • Jiao Sun, Anjali Narayan-Chen, Shereen Oraby, Shuyang Gao, Tagyoung Chung, Jing Huang, Yang Liu, Nanyun Peng
In this work, we propose a new task, context-situated pun generation, where a specific context represented by a set of keywords is provided, and the task is to first identify suitable pun words that are appropriate for the context, then generate puns based on the context keywords and the identified pun words.
1 code implementation • 24 Oct 2022 • Jiao Sun, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Tagyoung Chung, Jing Huang, Yang Liu, Nanyun Peng
The tasks of humor understanding and generation are challenging and subjective even for humans, requiring commonsense and real-world knowledge to master.
no code implementations • 22 Nov 2021 • Sanchit Agarwal, Jan Jezabek, Arijit Biswas, Emre Barut, Shuyang Gao, Tagyoung Chung
Most popular goal-oriented dialogue agents are capable of understanding the conversational context.
no code implementations • EMNLP (NLP4ConvAI) 2021 • Alicia Y. Tsai, Shereen Oraby, Vittorio Perera, Jiun-Yu Kao, Yuheng Du, Anjali Narayan-Chen, Tagyoung Chung, Dilek Hakkani-Tur
Our results show that while high style accuracy and semantic correctness are easier to achieve for more lexically-defined styles with conditional training, stylistic control is also achievable for more semantically complex styles using discriminator-based guided decoding methods.
1 code implementation • 2 Jul 2021 • Junya Chen, Zhe Gan, Xuan Li, Qing Guo, Liqun Chen, Shuyang Gao, Tagyoung Chung, Yi Xu, Belinda Zeng, Wenlian Lu, Fan Li, Lawrence Carin, Chenyang Tao
InfoNCE-based contrastive representation learners, such as SimCLR, have been tremendously successful in recent years.
no code implementations • NAACL 2021 • Anish Acharya, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Belgamwar, Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi, Raefer Gabriel, Shuyang Gao, Rahul Goel, Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun-Yu Kao, Prakash Krishnan, Peter Ku, Anuj Goyal, Chien-Wei Lin, Qing Liu, Arindam Mandal, Angeliki Metallinou, Vishal Naik, Yi Pan, Shachi Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen, Nikko Strom, Eddie Wang
Finally, we evaluate our system using a typical movie ticket booking task and show that the dialogue simulator is an essential component of the system that leads to over $50\%$ improvement in turn-level action signature prediction accuracy.
1 code implementation • EACL 2021 • Saket Dingliwal, Bill Gao, Sanchit Agarwal, Chien-Wei Lin, Tagyoung Chung, Dilek Hakkani-Tur
Dialogue State Tracking (DST) forms a core component of automated chatbot based systems designed for specific goals like hotel, taxi reservation, tourist information, etc.
no code implementations • 16 Nov 2020 • Chien-Wei Lin, Vincent Auvray, Daniel Elkind, Arijit Biswas, Maryam Fazel-Zarandi, Nehal Belgamwar, Shubhra Chandra, Matt Zhao, Angeliki Metallinou, Tagyoung Chung, Charlie Shucheng Zhu, Suranjit Adhikari, Dilek Hakkani-Tur
Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal.
1 code implementation • INLG (ACL) 2020 • Yuheng Du, Shereen Oraby, Vittorio Perera, Minmin Shen, Anjali Narayan-Chen, Tagyoung Chung, Anu Venkatesh, Dilek Hakkani-Tur
We train different state-of-the-art models for neural natural language generation on this dataset and show that in many cases, including rich schema information allows our models to produce higher quality outputs both in terms of semantics and diversity.
1 code implementation • WS 2020 • Shuyang Gao, Sanchit Agarwal, Tagyoung Chung, Di Jin, Dilek Hakkani-Tur
In this paper, we propose using machine reading comprehension (RC) in state tracking from two perspectives: model architectures and datasets.
2 code implementations • 1 Oct 2019 • Di Jin, Shuyang Gao, Jiun-Yu Kao, Tagyoung Chung, Dilek Hakkani-Tur
Machine Reading Comprehension (MRC) for question answering (QA), which aims to answer a question given the relevant context passages, is an important way to test the ability of intelligence systems to understand human language.
no code implementations • WS 2019 • Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagyoung Chung, Dilek Hakkani-Tur
In contrast to traditional state tracking methods where the dialog state is often predicted as a distribution over a closed set of all the possible slot values within an ontology, our method uses a simple attention-based neural network to point to the slot values within the conversation.
Ranked #19 on Multi-domain Dialogue State Tracking on MULTIWOZ 2.0
no code implementations • WS 2019 • Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Hedayatnia, Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tur
Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches.
no code implementations • NAACL 2019 • Wenbo Zhao, Tagyoung Chung, Anuj Goyal, Angeliki Metallinou
Using this framework as a starting point, we focus on two aspects: improving subgraph selection through a novel ranking method and leveraging the subject--relation dependency by proposing a joint scoring CNN model with a novel loss function that enforces the well-order of scores.
no code implementations • NAACL 2019 • Marco Damonte, Rahul Goel, Tagyoung Chung
Executable semantic parsing is the task of converting natural language utterances into logical forms that can be directly used as queries to get a response.
no code implementations • 30 Nov 2018 • Rahul Goel, Shachi Paul, Tagyoung Chung, Jeremie Lecomte, Arindam Mandal, Dilek Hakkani-Tur
This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated or completely re-trained.
no code implementations • 26 Oct 2018 • Sanchit Agarwal, Rahul Goel, Tagyoung Chung, Abhishek Sethi, Arindam Mandal, Spyros Matsoukas
Typical spoken language understanding systems provide narrow semantic parses using a domain-specific ontology.
no code implementations • NAACL 2018 • Thomas Kollar, Danielle Berry, Lauren Stuart, Karolina Owczarzak, Tagyoung Chung, Lambert Mathias, Michael Kayser, Bradford Snow, Spyros Matsoukas
This paper introduces a meaning representation for spoken language understanding.