Search Results for author: Tamim Niazi

Found 4 papers, 0 papers with code

Deep radiomic signature with immune cell markers predicts the survival of glioma patients

no code implementations9 Jun 2022 Ahmad Chaddad, Paul Daniel Mingli Zhang, Saima Rathore, Paul Sargos, Christian Desrosiers, Tamim Niazi

These results demonstrate the usefulness of proposed DRFs as non-invasive biomarker for predicting treatment response in patients with brain tumors.

Modeling of Textures to Predict Immune Cell Status and Survival of Brain Tumour Patients

no code implementations4 Jun 2022 Ahmad Chaddad, Mingli Zhang, Lama Hassan, Tamim Niazi

Combined the immune markers with DRFs and clinical variables, Kaplan-Meier estimator and Log-rank test achieved the most significant difference between predicted groups of patients (short-term versus long-term survival) with p\,=\, 4. 31$\times$10$^{-7}$ compared to p\,=\, 0. 03 for Immune cell markers, p\,=\, 0. 07 for clinical variables , and p\,=\, 1. 45$\times$10$^{-5}$ for DRFs.

Deep radiomic features from MRI scans predict survival outcome of recurrent glioblastoma

no code implementations15 Nov 2019 Ahmad Chaddad, Saima Rathore, Mingli Zhang, Christian Desrosiers, Tamim Niazi

This paper proposes to use deep radiomic features (DRFs) from a convolutional neural network (CNN) to model fine-grained texture signatures in the radiomic analysis of recurrent glioblastoma (rGBM).

General Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.