1 code implementation • 15 Apr 2024 • Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman, Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Zhang, Ruiqi Zhong, Seán Ó hÉigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Edwards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwan, Yoshua Bengio, Danqi Chen, Philip H. S. Torr, Samuel Albanie, Tegan Maharaj, Jakob Foerster, Florian Tramer, He He, Atoosa Kasirzadeh, Yejin Choi, David Krueger
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs).
no code implementations • 26 Feb 2024 • Erina Seh-Young Moon, Devansh Saxena, Tegan Maharaj, Shion Guha
We also find that although casenotes cannot predict discharge outcomes, they contain contextual case signals.
no code implementations • 26 Oct 2023 • Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, Jeff Clune, Tegan Maharaj, Frank Hutter, Atılım Güneş Baydin, Sheila Mcilraith, Qiqi Gao, Ashwin Acharya, David Krueger, Anca Dragan, Philip Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, Sören Mindermann
Artificial Intelligence (AI) is progressing rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals.
1 code implementation • 23 Oct 2023 • Dmitrii Krasheninnikov, Egor Krasheninnikov, Bruno Mlodozeniec, Tegan Maharaj, David Krueger
Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful.
1 code implementation • 18 Oct 2022 • Tegan Maharaj
And in making great progress in such a short time, the field has developed many norms and ad-hoc standards, focused on a relatively small range of problem settings.
1 code implementation • 20 Sep 2022 • Shoaib Ahmed Siddiqui, Nitarshan Rajkumar, Tegan Maharaj, David Krueger, Sara Hooker
Modern machine learning research relies on relatively few carefully curated datasets.
no code implementations • 14 Dec 2021 • Shahar Avin, Haydn Belfield, Miles Brundage, Gretchen Krueger, Jasmine Wang, Adrian Weller, Markus Anderljung, Igor Krawczuk, David Krueger, Jonathan Lebensold, Tegan Maharaj, Noa Zilberman
The range of application of artificial intelligence (AI) is vast, as is the potential for harm.
no code implementations • 29 Sep 2021 • David Krueger, Tegan Maharaj, Jan Leike
We use these unit tests to demonstrate that changes to the learning algorithm (e. g. introducing meta-learning) can cause previously hidden incentives to be revealed, resulting in qualitatively different behaviour despite no change in performance metric.
no code implementations • 30 Oct 2020 • Prateek Gupta, Tegan Maharaj, Martin Weiss, Nasim Rahaman, Hannah Alsdurf, Abhinav Sharma, Nanor Minoyan, Soren Harnois-Leblanc, Victor Schmidt, Pierre-Luc St. Charles, Tristan Deleu, Andrew Williams, Akshay Patel, Meng Qu, Olexa Bilaniuk, Gaétan Marceau Caron, Pierre Luc Carrier, Satya Ortiz-Gagné, Marc-Andre Rousseau, David Buckeridge, Joumana Ghosn, Yang Zhang, Bernhard Schölkopf, Jian Tang, Irina Rish, Christopher Pal, Joanna Merckx, Eilif B. Muller, Yoshua Bengio
The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution.
1 code implementation • ICLR 2021 • Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif Muller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilanuik, David Buckeridge, Gáetan Marceau Caron, Pierre-Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Chris Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams
Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT).
no code implementations • 19 Sep 2020 • David Krueger, Tegan Maharaj, Jan Leike
We introduce the term auto-induced distributional shift (ADS) to describe the phenomenon of an algorithm causing a change in the distribution of its own inputs.
no code implementations • 18 May 2020 • Hannah Alsdurf, Edmond Belliveau, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Benjamin Prud'homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Francois Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, Yun William Yu
Manual contact tracing of Covid-19 cases has significant challenges that limit the ability of public health authorities to minimize community infections.
no code implementations • 15 Apr 2020 • Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger, Gillian Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung, Andrew Trask, Emma Bluemke, Jonathan Lebensbold, Cullen O'Keefe, Mark Koren, Théo Ryffel, JB Rubinovitz, Tamay Besiroglu, Federica Carugati, Jack Clark, Peter Eckersley, Sarah de Haas, Maritza Johnson, Ben Laurie, Alex Ingerman, Igor Krawczuk, Amanda Askell, Rosario Cammarota, Andrew Lohn, David Krueger, Charlotte Stix, Peter Henderson, Logan Graham, Carina Prunkl, Bianca Martin, Elizabeth Seger, Noa Zilberman, Seán Ó hÉigeartaigh, Frens Kroeger, Girish Sastry, Rebecca Kagan, Adrian Weller, Brian Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel Herbert-Voss, Martijn Rasser, Shagun Sodhani, Carrick Flynn, Thomas Krendl Gilbert, Lisa Dyer, Saif Khan, Yoshua Bengio, Markus Anderljung
With the recent wave of progress in artificial intelligence (AI) has come a growing awareness of the large-scale impacts of AI systems, and recognition that existing regulations and norms in industry and academia are insufficient to ensure responsible AI development.
Computers and Society
no code implementations • 25 Sep 2019 • David Scott Krueger, Tegan Maharaj, Shane Legg, Jan Leike
Decisions made by machine learning systems have increasing influence on the world.
3 code implementations • 10 Jun 2019 • David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, Yoshua Bengio
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help.
2 code implementations • ICML 2017 • Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness.
1 code implementation • NeurIPS 2017 • Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Prabhat, Christopher Pal
We present a dataset, ExtremeWeather, to encourage machine learning research in this area and to help facilitate further work in understanding and mitigating the effects of climate change.
2 code implementations • CVPR 2017 • Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron Courville, Christopher Pal
In addition to presenting statistics and a description of the dataset, we perform a detailed analysis of 5 different models' predictions, and compare these with human performance.
no code implementations • 24 Oct 2016 • Kamil Rocki, Tomasz Kornuta, Tegan Maharaj
We propose a novel method of regularization for recurrent neural networks called suprisal-driven zoneout.
6 code implementations • 3 Jun 2016 • David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, Chris Pal
We propose zoneout, a novel method for regularizing RNNs.