1 code implementation • 22 Aug 2022 • Fabien Baradel, Romain Brégier, Thibault Groueix, Philippe Weinzaepfel, Yannis Kalantidis, Grégory Rogez
It is simple, generic and versatile, as it can be plugged on top of any image-based model to transform it in a video-based model leveraging temporal information.
no code implementations • 1 Jul 2022 • Marissa Ramirez de Chanlatte, Matheus Gadelha, Thibault Groueix, Radomir Mech
We present a fine-tuning method to improve the appearance of 3D geometries reconstructed from single images.
no code implementations • 13 Jun 2022 • Theo Deprelle, Thibault Groueix, Noam Aigerman, Vladimir G. Kim, Mathieu Aubry
We demonstrate that this improves the quality of the learned surface representation, as well as its consistency in a collection of related shapes.
1 code implementation • 5 May 2022 • Noam Aigerman, Kunal Gupta, Vladimir G. Kim, Siddhartha Chaudhuri, Jun Saito, Thibault Groueix
This paper introduces a framework designed to accurately predict piecewise linear mappings of arbitrary meshes via a neural network, enabling training and evaluating over heterogeneous collections of meshes that do not share a triangulation, as well as producing highly detail-preserving maps whose accuracy exceeds current state of the art.
1 code implementation • 18 Oct 2021 • Fabien Baradel, Thibault Groueix, Philippe Weinzaepfel, Romain Brégier, Yannis Kalantidis, Grégory Rogez
In fact, we show that simply fine-tuning the batch normalization layers of the model is enough to achieve large gains.
Ranked #3 on
3D Human Pose Estimation
on MPI-INF-3DHP
(Acceleration Error metric)
1 code implementation • NeurIPS 2020 • Tom Monnier, Thibault Groueix, Mathieu Aubry
In contrast, we present an orthogonal approach that does not rely on abstract features but instead learns to predict image transformations and performs clustering directly in image space.
Ranked #2 on
Unsupervised Image Classification
on SVHN
(using extra training data)
3 code implementations • NeurIPS 2019 • Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
We propose to represent shapes as the deformation and combination of learnable elementary 3D structures, which are primitives resulting from training over a collection of shape.
Ranked #5 on
3D Dense Shape Correspondence
on SHREC'19
(using extra training data)
no code implementations • 6 Jul 2019 • Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
We propose a self-supervised approach to deep surface deformation.
no code implementations • 9 Oct 2018 • Tomas Hodan, Rigas Kouskouridas, Tae-Kyun Kim, Federico Tombari, Kostas Bekris, Bertram Drost, Thibault Groueix, Krzysztof Walas, Vincent Lepetit, Ales Leonardis, Carsten Steger, Frank Michel, Caner Sahin, Carsten Rother, Jiri Matas
The workshop featured four invited talks, oral and poster presentations of accepted workshop papers, and an introduction of the BOP benchmark for 6D object pose estimation.
no code implementations • ECCV 2018 • Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
By predicting this feature for a new shape, we implicitly predict correspondences between this shape and the template.
1 code implementation • 13 Jun 2018 • Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
By predicting this feature for a new shape, we implicitly predict correspondences between this shape and the template.
Ranked #6 on
3D Dense Shape Correspondence
on SHREC'19
(using extra training data)
no code implementations • CVPR 2018 • Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
We introduce a method for learning to generate the surface of 3D shapes.
3 code implementations • 15 Feb 2018 • Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, Mathieu Aubry
We introduce a method for learning to generate the surface of 3D shapes.
Ranked #3 on
Point Cloud Completion
on Completion3D