no code implementations • 15 Dec 2020 • Piali Das, Valerio Perrone, Nikita Ivkin, Tanya Bansal, Zohar Karnin, Huibin Shen, Iaroslav Shcherbatyi, Yotam Elor, Wilton Wu, Aida Zolic, Thibaut Lienart, Alex Tang, Amr Ahmed, Jean Baptiste Faddoul, Rodolphe Jenatton, Fela Winkelmolen, Philip Gautier, Leo Dirac, Andre Perunicic, Miroslav Miladinovic, Giovanni Zappella, Cédric Archambeau, Matthias Seeger, Bhaskar Dutt, Laurence Rouesnel
AutoML systems provide a black-box solution to machine learning problems by selecting the right way of processing features, choosing an algorithm and tuning the hyperparameters of the entire pipeline.
1 code implementation • 23 Jul 2020 • Anthony D. Blaom, Franz Kiraly, Thibaut Lienart, Yiannis Simillides, Diego Arenas, Sebastian J. Vollmer
MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages.
3 code implementations • 24 Mar 2020 • Aaron Klein, Louis C. Tiao, Thibaut Lienart, Cedric Archambeau, Matthias Seeger
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization.
4 code implementations • 16 Jan 2017 • Joris Bierkens, Alexandre Bouchard-Côté, Arnaud Doucet, Andrew B. Duncan, Paul Fearnhead, Thibaut Lienart, Gareth Roberts, Sebastian J. Vollmer
Piecewise Deterministic Monte Carlo algorithms enable simulation from a posterior distribution, whilst only needing to access a sub-sample of data at each iteration.
Methodology Computation
no code implementations • 31 Dec 2015 • Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh
The posterior server allows scalable and robust Bayesian learning in cases where a data set is stored in a distributed manner across a cluster, with each compute node containing a disjoint subset of data.
1 code implementation • NeurIPS 2015 • Thibaut Lienart, Yee Whye Teh, Arnaud Doucet
The computational complexity of our algorithm at each iteration is quadratic in the number of particles.