Search Results for author: Thijs Kooi

Found 10 papers, 1 papers with code

Is user feedback always informative? Retrieval Latent Defending for Semi-Supervised Domain Adaptation without Source Data

no code implementations22 Jul 2024 Junha Song, Tae Soo Kim, Junha Kim, Gunhee Nam, Thijs Kooi, Jaegul Choo

This approach helps existing SemiSDA methods to adapt the model with a balanced supervised signal by utilizing latent defending samples throughout the adaptation process.

Domain Adaptation Image Classification +2

ELVIS: Empowering Locality of Vision Language Pre-training with Intra-modal Similarity

no code implementations11 Apr 2023 Sumin Seo, Jaewoong Shin, Jaewoo Kang, Tae Soo Kim, Thijs Kooi

Deep learning has shown great potential in assisting radiologists in reading chest X-ray (CXR) images, but its need for expensive annotations for improving performance prevents widespread clinical application.

Phrase Grounding

Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images

no code implementations28 Mar 2023 Hyeonsoo Lee, Junha Kim, Eunkyung Park, Minjeong Kim, Taesoo Kim, Thijs Kooi

Recently, deep learning models have shown the potential to predict breast cancer risk and enable targeted screening strategies, but current models do not consider the change in the breast over time.

Decoder

Understanding metric-related pitfalls in image analysis validation

no code implementations3 Feb 2023 Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.

OOOE: Only-One-Object-Exists Assumption to Find Very Small Objects in Chest Radiographs

no code implementations13 Oct 2022 Gunhee Nam, Taesoo Kim, Sanghyup Lee, Thijs Kooi

We validate our approach using a large scale proprietary dataset of over 100K radiographs as well as publicly available RANZCR-CLiP Kaggle Challenge dataset and show that our method consistently outperforms commonly used regression-based detection models as well as commonly used pixel-wise classification methods.

Anatomy regression

Did You Get What You Paid For? Rethinking Annotation Cost of Deep Learning Based Computer Aided Detection in Chest Radiographs

no code implementations30 Sep 2022 Tae Soo Kim, Geonwoon Jang, Sanghyup Lee, Thijs Kooi

As deep networks require large amounts of accurately labeled training data, a strategy to collect sufficiently large and accurate annotations is as important as innovations in recognition methods.

Tutorial on the development of AI models for medical image analysis

no code implementations14 Jul 2022 Thijs Kooi

In this tutorial, we address the latter and discuss some techniques to conduct the development process in order to make this as efficient as possible.

Common Limitations of Image Processing Metrics: A Picture Story

1 code implementation12 Apr 2021 Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, Matthew Blaschko, Florian Buettner, M. Jorge Cardoso, Jianxu Chen, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Sandy Engelhardt, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Peter Hirsch, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, A. Emre Kavur, Hannes Kenngott, Jens Kleesiek, Andreas Kleppe, Sven Kohler, Florian Kofler, Annette Kopp-Schneider, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clara I. Sánchez, Julien Schroeter, Anindo Saha, M. Alper Selver, Lalith Sharan, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul Jäger, Lena Maier-Hein

While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.

Instance Segmentation object-detection +2

Classifying Symmetrical Differences and Temporal Change in Mammography Using Deep Neural Networks

no code implementations22 Mar 2017 Thijs Kooi, Nico Karssemeijer

We investigate the addition of symmetry and temporal context information to a deep Convolutional Neural Network (CNN) with the purpose of detecting malignant soft tissue lesions in mammography.

Cannot find the paper you are looking for? You can Submit a new open access paper.