no code implementations • 7 Jan 2025 • Stefan Hein Bengtson, Daniel Lehotský, Vasiliki Ismiroglou, Niels Madsen, Thomas B. Moeslund, Malte Pedersen
Additionally, we present two baseline length estimation methods, the best performing being a custom MobileNetV2-based regression model reaching an MAE of 0. 62cm in images with no occlusion and 1. 38cm in images with occlusion.
no code implementations • 3 Jan 2025 • Simon B. Jensen, Stefan Oehmcke, Andreas Møgelmose, Meysam Madadi, Christian Igel, Sergio Escalera, Thomas B. Moeslund
We introduce the BioVista dataset, comprising 44. 378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark, designed to explore multi-modal fusion approaches for biodiversity potential classification.
1 code implementation • 20 Nov 2024 • Àlex Pujol Vidal, Anders S. Johansen, Mohammad N. S. Jahromi, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund
We investigate the effectiveness of Explainable AI (XAI) in verifying Machine Unlearning (MU) within the context of harbor front monitoring, focusing on data privacy and regulatory compliance.
no code implementations • 18 Sep 2024 • Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, Thomas B. Moeslund
We present Agglomerative Token Clustering (ATC), a novel token merging method that consistently outperforms previous token merging and pruning methods across image classification, image synthesis, and object detection & segmentation tasks.
1 code implementation • 16 Sep 2024 • Anthony Cioppa, Silvio Giancola, Vladimir Somers, Victor Joos, Floriane Magera, Jan Held, Seyed Abolfazl Ghasemzadeh, Xin Zhou, Karolina Seweryn, Mateusz Kowalczyk, Zuzanna Mróz, Szymon Łukasik, Michał Hałoń, Hassan Mkhallati, Adrien Deliège, Carlos Hinojosa, Karen Sanchez, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Adam Gorski, Albert Clapés, Andrei Boiarov, Anton Afanasiev, Artur Xarles, Atom Scott, Byoungkwon Lim, Calvin Yeung, Cristian Gonzalez, Dominic Rüfenacht, Enzo Pacilio, Fabian Deuser, Faisal Sami Altawijri, Francisco Cachón, Hankyul Kim, Haobo Wang, Hyeonmin Choe, Hyunwoo J Kim, Il-Min Kim, Jae-Mo Kang, Jamshid Tursunboev, Jian Yang, Jihwan Hong, JiMin Lee, Jing Zhang, Junseok Lee, Kexin Zhang, Konrad Habel, Licheng Jiao, Linyi Li, Marc Gutiérrez-Pérez, Marcelo Ortega, Menglong Li, Milosz Lopatto, Nikita Kasatkin, Nikolay Nemtsev, Norbert Oswald, Oleg Udin, Pavel Kononov, Pei Geng, Saad Ghazai Alotaibi, Sehyung Kim, Sergei Ulasen, Sergio Escalera, Shanshan Zhang, Shuyuan Yang, Sunghwan Moon, Thomas B. Moeslund, Vasyl Shandyba, Vladimir Golovkin, Wei Dai, WonTaek Chung, Xinyu Liu, Yongqiang Zhu, Youngseo Kim, Yuan Li, Yuting Yang, Yuxuan Xiao, Zehua Cheng, Zhihao LI
The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team.
no code implementations • ECCV Workshops 2024 • Galadrielle Humblot-Renaux, Anders Skaarup Johansen, Jonathan Eichild Schmidt, Amanda Frederikke Irlind, Niels Madsen, Thomas B. Moeslund, Malte Pedersen
Continuous inspection and mapping of the seabed allows for monitoring the impact of anthropogenic activities on benthic ecosystems.
1 code implementation • 8 Jul 2024 • Mia Siemon, Thomas B. Moeslund, Barry Norton, Kamal Nasrollahi
In this study, we formulate the task of Video Anomaly Detection as a probabilistic analysis of object bounding boxes.
Ranked #1 on
Anomaly Detection
on Street Scene
3 code implementations • 4 Jun 2024 • Scott C. Lowe, Joakim Bruslund Haurum, Sageev Oore, Thomas B. Moeslund, Graham W. Taylor
Our suite of benchmarking experiments use encoders pretrained solely on ImageNet-1k with either supervised or self-supervised training techniques, deployed on image datasets that were not seen during training, and clustered with conventional clustering algorithms.
1 code implementation • 6 May 2024 • Neelu Madan, Andreas Moegelmose, Rajat Modi, Yogesh S. Rawat, Thomas B. Moeslund
Additionally, we offer an in-depth performance analysis of these models for the 6 most common video tasks.
1 code implementation • 11 Apr 2024 • Lasse H. Hansen, Simon B. Jensen, Mark P. Philipsen, Andreas Møgelmose, Lars Bodum, Thomas B. Moeslund
We present OpenTrench3D, a novel and comprehensive 3D Semantic Segmentation point cloud dataset, designed to advance research and development in underground utility surveying and mapping.
1 code implementation • 8 Apr 2024 • Artur Xarles, Sergio Escalera, Thomas B. Moeslund, Albert Clapés
In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in sports videos.
1 code implementation • CVPR 2024 • Galadrielle Humblot-Renaux, Sergio Escalera, Thomas B. Moeslund
The ability to detect unfamiliar or unexpected images is essential for safe deployment of computer vision systems.
Image Classification with Label Noise
Out of Distribution (OOD) Detection
1 code implementation • 2 Apr 2024 • Artur Xarles, Sergio Escalera, Thomas B. Moeslund, Albert Clapés
In this paper, we introduce ASTRA, a Transformer-based model designed for the task of Action Spotting in soccer matches.
no code implementations • 21 Mar 2024 • Christos Kantas, Bjørk Antoniussen, Mathias V. Andersen, Rasmus Munksø, Shobhit Kotnala, Simon B. Jensen, Andreas Møgelmose, Lau Nørgaard, Thomas B. Moeslund
Using RAW-images in computer vision problems is surprisingly underexplored considering that converting from RAW to RGB does not introduce any new capture information.
no code implementations • 5 Feb 2024 • Mohammad N. S. Jahromi, Satya. M. Muddamsetty, Asta Sofie Stage Jarlner, Anna Murphy Høgenhaug, Thomas Gammeltoft-Hansen, Thomas B. Moeslund
Explainable AI (XAI) aids in deciphering 'black-box' models.
2 code implementations • 12 Sep 2023 • Anthony Cioppa, Silvio Giancola, Vladimir Somers, Floriane Magera, Xin Zhou, Hassan Mkhallati, Adrien Deliège, Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdullah Kamal, Adrien Maglo, Albert Clapés, Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott, Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser, Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari Koguchi, Håkan Ardö, Ibrahim Salah, Ido Yerushalmy, Iftikar Muhammad, Ikuma Uchida, Ishay Be'ery, Jaonary Rabarisoa, Jeongae Lee, Jiajun Fu, Jianqin Yin, Jinghang Xu, Jongho Nang, Julien Denize, Junjie Li, Junpei Zhang, Juntae Kim, Kamil Synowiec, Kenji Kobayashi, Kexin Zhang, Konrad Habel, Kota Nakajima, Licheng Jiao, Lin Ma, Lizhi Wang, Luping Wang, Menglong Li, Mengying Zhou, Mohamed Nasr, Mohamed Abdelwahed, Mykola Liashuha, Nikolay Falaleev, Norbert Oswald, Qiong Jia, Quoc-Cuong Pham, Ran Song, Romain Hérault, Rui Peng, Ruilong Chen, Ruixuan Liu, Ruslan Baikulov, Ryuto Fukushima, Sergio Escalera, Seungcheon Lee, Shimin Chen, Shouhong Ding, Taiga Someya, Thomas B. Moeslund, Tianjiao Li, Wei Shen, Wei zhang, Wei Li, Wei Dai, Weixin Luo, Wending Zhao, Wenjie Zhang, Xinquan Yang, Yanbiao Ma, Yeeun Joo, Yingsen Zeng, Yiyang Gan, Yongqiang Zhu, Yujie Zhong, Zheng Ruan, Zhiheng Li, Zhijian Huang, Ziyu Meng
More information on the tasks, challenges, and leaderboards are available on https://www. soccer-net. org.
1 code implementation • 31 Aug 2023 • Neelu Madan, Nicolae-Catalin Ristea, Kamal Nasrollahi, Thomas B. Moeslund, Radu Tudor Ionescu
In this paper, we propose a curriculum learning approach that updates the masking strategy to continually increase the complexity of the self-supervised reconstruction task.
1 code implementation • 9 Aug 2023 • Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, Thomas B. Moeslund
While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets.
2 code implementations • 26 Jun 2023 • Galadrielle Humblot-Renaux, Sergio Escalera, Thomas B. Moeslund
While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated.
1 code implementation • 21 Feb 2023 • Malte Pedersen, Daniel Lehotský, Ivan Nikolov, Thomas B. Moeslund
BrackishMOT consists of 98 sequences captured in the wild.
7 code implementations • 5 Oct 2022 • Silvio Giancola, Anthony Cioppa, Adrien Deliège, Floriane Magera, Vladimir Somers, Le Kang, Xin Zhou, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdulrahman Darwish, Adrien Maglo, Albert Clapés, Andreas Luyts, Andrei Boiarov, Artur Xarles, Astrid Orcesi, Avijit Shah, Baoyu Fan, Bharath Comandur, Chen Chen, Chen Zhang, Chen Zhao, Chengzhi Lin, Cheuk-Yiu Chan, Chun Chuen Hui, Dengjie Li, Fan Yang, Fan Liang, Fang Da, Feng Yan, Fufu Yu, Guanshuo Wang, H. Anthony Chan, He Zhu, Hongwei Kan, Jiaming Chu, Jianming Hu, Jianyang Gu, Jin Chen, João V. B. Soares, Jonas Theiner, Jorge De Corte, José Henrique Brito, Jun Zhang, Junjie Li, Junwei Liang, Leqi Shen, Lin Ma, Lingchi Chen, Miguel Santos Marques, Mike Azatov, Nikita Kasatkin, Ning Wang, Qiong Jia, Quoc Cuong Pham, Ralph Ewerth, Ran Song, RenGang Li, Rikke Gade, Ruben Debien, Runze Zhang, Sangrok Lee, Sergio Escalera, Shan Jiang, Shigeyuki Odashima, Shimin Chen, Shoichi Masui, Shouhong Ding, Sin-wai Chan, Siyu Chen, Tallal El-Shabrawy, Tao He, Thomas B. Moeslund, Wan-Chi Siu, Wei zhang, Wei Li, Xiangwei Wang, Xiao Tan, Xiaochuan Li, Xiaolin Wei, Xiaoqing Ye, Xing Liu, Xinying Wang, Yandong Guo, YaQian Zhao, Yi Yu, YingYing Li, Yue He, Yujie Zhong, Zhenhua Guo, Zhiheng Li
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team.
1 code implementation • 25 Sep 2022 • Neelu Madan, Nicolae-Catalin Ristea, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
Ranked #5 on
Anomaly Detection
on CUHK Avenue
no code implementations • 20 Jul 2022 • Malte Pedersen, Joakim Bruslund Haurum, Patrick Dendorfer, Thomas B. Moeslund
There exists no comprehensive metric for describing the complexity of Multi-Object Tracking (MOT) sequences.
no code implementations • 16 Jul 2022 • Antonio Barbalau, Radu Tudor Ionescu, Mariana-Iuliana Georgescu, Jacob Dueholm, Bharathkumar Ramachandra, Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
A self-supervised multi-task learning (SSMTL) framework for video anomaly detection was recently introduced in literature.
Ranked #3 on
Anomaly Detection
on CUHK Avenue
no code implementations • 15 Feb 2022 • Simon B. Jensen, Thomas B. Moeslund, Søren J. Andreasen
Anomaly detection in X-ray images has been an active and lasting research area in the last decades, especially in the domain of medical X-ray images.
no code implementations • 16 Jan 2022 • Javier Selva, Anders S. Johansen, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund, Albert Clapés
Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video.
4 code implementations • CVPR 2022 • Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
Ranked #1 on
Anomaly Detection
on CUHK Avenue
(TBDC metric)
1 code implementation • 15 Nov 2021 • Joakim Bruslund Haurum, Meysam Madadi, Sergio Escalera, Thomas B. Moeslund
In order to efficiently manage the sewerage infrastructure, automated sewer inspection has to be utilized.
no code implementations • 20 Sep 2021 • David Curto, Albert Clapés, Javier Selva, Sorina Smeureanu, Julio C. S. Jacques Junior, David Gallardo-Pujol, Georgina Guilera, David Leiva, Thomas B. Moeslund, Sergio Escalera, Cristina Palmero
Personality computing has become an emerging topic in computer vision, due to the wide range of applications it can be used for.
no code implementations • 15 Sep 2021 • Galadrielle Humblot-Renaux, Letizia Marchegiani, Thomas B. Moeslund, Rikke Gade
In a cross-dataset generalization experiment, we show that our affordance learning scheme can be applied across a diverse mix of datasets and improves driveability estimation in unseen environments compared to general-purpose, single-dataset segmentation.
1 code implementation • CVPR 2021 • Joakim Bruslund Haurum, Thomas B. Moeslund
To this end, in this work we present a large novel and publicly available multi-label classification dataset for image-based sewer defect classification called Sewer-ML.
no code implementations • 5 Feb 2021 • Andreas Aakerberg, Kamal Nasrollahi, Thomas B. Moeslund
Experimental results on both real and artificially corrupted face images show that our method results in more detailed reconstructions with less noise compared to existing State-of-the-Art (SoTA) methods.
1 code implementation • 26 Jan 2021 • Satya M. Muddamsetty, Mohammad N. S. Jahromi, Andreea E. Ciontos, Laura M. Fenoy, Thomas B. Moeslund
Explainable Artificial Intelligence (XAI) has in recent years become a well-suited framework to generate human understandable explanations of "black-box" models.
4 code implementations • 26 Nov 2020 • Adrien Deliège, Anthony Cioppa, Silvio Giancola, Meisam J. Seikavandi, Jacob V. Dueholm, Kamal Nasrollahi, Bernard Ghanem, Thomas B. Moeslund, Marc Van Droogenbroeck
In this work, we propose SoccerNet-v2, a novel large-scale corpus of manual annotations for the SoccerNet video dataset, along with open challenges to encourage more research in soccer understanding and broadcast production.
Ranked #1 on
Camera shot segmentation
on SoccerNet-v2
1 code implementation • CVPR 2020 • Malte Pedersen, Joakim Bruslund Haurum, Stefan Hein Bengtson, Thomas B. Moeslund
In this work we present a novel publicly available stereo based 3D RGB dataset for multi-object zebrafish tracking, called 3D-ZeF.
3D Multi-Object Tracking
3D Object Detection From Stereo Images
2 code implementations • 4 Jun 2020 • Satya M. Muddamsetty, Mohammad N. S. Jahromi, Thomas B. Moeslund
A new brand of technical artificial intelligence ( Explainable AI ) research has focused on trying to open up the 'black box' and provide some explainability.
1 code implementation • 16 Apr 2020 • Anthony Cioppa, Adrien Deliège, Noor Ul Huda, Rikke Gade, Marc Van Droogenbroeck, Thomas B. Moeslund
As an alternative, we developed a system that detects players from a unique cheap and wide-angle fisheye camera assisted by a single narrow-angle thermal camera.
no code implementations • 3 Apr 2020 • Seyed Mojtaba Marvasti-Zadeh, Hossein Ghanei-Yakhdan, Shohreh Kasaei, Kamal Nasrollahi, Thomas B. Moeslund
Then, the proposed method extracts deep semantic information from a fully convolutional FEN and fuses it with the best ResNet-based feature maps to strengthen the target representation in the learning process of continuous convolution filters.
no code implementations • 1 Apr 2020 • Christoffer Bøgelund Rasmussen, Thomas B. Moeslund
We show that accuracy improvements can be made with more complex meta-architectures and speed can be optimised by decreasing the image size with only slight losses in accuracy.
1 code implementation • CVPR 2020 • Anthony Cioppa, Adrien Deliège, Silvio Giancola, Bernard Ghanem, Marc Van Droogenbroeck, Rikke Gade, Thomas B. Moeslund
We benchmark our loss on a large dataset of soccer videos, SoccerNet, and achieve an improvement of 12. 8% over the baseline.
Ranked #3 on
Action Spotting
on SoccerNet
2 code implementations • 12 Aug 2019 • Joakim Bruslund Haurum, Chris H. Bahnsen, Thomas B. Moeslund
In this paper, we design a system for the detection of rainfall by the use of surveillance cameras.
4 code implementations • 30 Oct 2018 • Chris H. Bahnsen, Thomas B. Moeslund
We propose a new evaluation protocol that evaluates the rain removal algorithms on their ability to improve the performance of subsequent segmentation, instance segmentation, and feature tracking algorithms under rain and snow.
no code implementations • 10 Sep 2018 • Chris H. Bahnsen, Andreas Møgelmose, Thomas B. Moeslund
This tech report gives an introduction to two annotation toolboxes that enable the creation of pixel and polygon-based masks as well as bounding boxes around objects of interest.
no code implementations • 25 May 2018 • Alireza Sepas-Moghaddam, Mohammad A. Haque, Paulo Lobato Correia, Kamal Nasrollahi, Thomas B. Moeslund, Fernando Pereira
This paper proposes a double-deep spatio-angular learning framework for light field based face recognition, which is able to learn both texture and angular dynamics in sequence using convolutional representations; this is a novel recognition framework that has never been proposed before for either face recognition or any other visual recognition task.
no code implementations • 23 Jun 2016 • Nattiya Kanhabua, Huamin Ren, Thomas B. Moeslund
In general, event-related information needs can be observed in query streams through various temporal patterns of user search behavior, e. g., spiky peaks for popular events, and periodicities for repetitive events.
no code implementations • 13 Mar 2016 • Huamin Ren, Hong Pan, Søren Ingvor Olsen, Thomas B. Moeslund
Sparse representation has been applied successfully in abnormal event detection, in which the baseline is to learn a dictionary accompanied by sparse codes.
no code implementations • CVPR 2013 • Rikke Gade, Anders Jorgensen, Thomas B. Moeslund
This paper presents a robust occupancy analysis system for thermal imaging.