no code implementations • 9 Oct 2024 • Christopher J. Whyte, Andrew W. Corcoran, Jonathan Robinson, Ryan Smith, Rosalyn J. Moran, Thomas Parr, Karl J. Friston, Anil K. Seth, Jakob Hohwy
The multifaceted nature of experience poses a challenge to the study of consciousness.
no code implementations • 27 Jul 2024 • Karl Friston, Conor Heins, Tim Verbelen, Lancelot Da Costa, Tommaso Salvatori, Dimitrije Markovic, Alexander Tschantz, Magnus Koudahl, Christopher Buckley, Thomas Parr
This paper describes a discrete state-space model -- and accompanying methods -- for generative modelling.
no code implementations • 6 Dec 2023 • Karl J. Friston, Tommaso Salvatori, Takuya Isomura, Alexander Tschantz, Alex Kiefer, Tim Verbelen, Magnus Koudahl, Aswin Paul, Thomas Parr, Adeel Razi, Brett Kagan, Christopher L. Buckley, Maxwell J. D. Ramstead
First, we simulate the aforementioned in vitro experiments, in which neuronal cultures spontaneously learn to play Pong, by implementing nested, free energy minimising processes.
no code implementations • 17 Nov 2023 • Karl J. Friston, Lancelot Da Costa, Alexander Tschantz, Alex Kiefer, Tommaso Salvatori, Victorita Neacsu, Magnus Koudahl, Conor Heins, Noor Sajid, Dimitrije Markovic, Thomas Parr, Tim Verbelen, Christopher L Buckley
This paper concerns structure learning or discovery of discrete generative models.
no code implementations • 8 Mar 2023 • Karl Friston, Daniel Ari Friedman, Axel Constant, V. Bleu Knight, Thomas Parr, John O. Campbell
This paper introduces a variational formulation of natural selection, paying special attention to the nature of "things" and the way that different "kinds" of "things" are individuated from - and influence - each other.
1 code implementation • 19 Dec 2022 • Filip Novicky, Thomas Parr, Karl Friston, M. Berk Mirza, Noor Sajid
Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations.
no code implementations • 21 Sep 2021 • Noor Sajid, Lancelot Da Costa, Thomas Parr, Karl Friston
Conversely, active inference reduces to Bayesian decision theory in the absence of ambiguity and relative risk, i. e., expected utility maximization.
no code implementations • 12 Jul 2021 • Noor Sajid, Francesco Faccio, Lancelot Da Costa, Thomas Parr, Jürgen Schmidhuber, Karl Friston
Under the Bayesian brain hypothesis, behavioural variations can be attributed to different priors over generative model parameters.
no code implementations • 17 Sep 2020 • Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, Ryan Smith
Precisely, we show the conditions under which active inference produces the optimal solution to the Bellman equation--a formulation that underlies several approaches to model-based reinforcement learning and control.
1 code implementation • 3 Sep 2020 • Danijar Hafner, Pedro A. Ortega, Jimmy Ba, Thomas Parr, Karl Friston, Nicolas Heess
While the narrow objectives correspond to domain-specific rewards as typical in reinforcement learning, the general objectives maximize information with the environment through latent variable models of input sequences.
no code implementations • 7 Jun 2020 • Karl Friston, Lancelot Da Costa, Danijar Hafner, Casper Hesp, Thomas Parr
In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy.
no code implementations • 9 Apr 2020 • Karl J. Friston, Thomas Parr, Peter Zeidman, Adeel Razi, Guillaume Flandin, Jean Daunizeau, Oliver J. Hulme, Alexander J. Billig, Vladimir Litvak, Rosalyn J. Moran, Cathy J. Price, Christian Lambert
This technical report describes a dynamic causal model of the spread of coronavirus through a population.
no code implementations • 22 Jan 2020 • Lancelot Da Costa, Thomas Parr, Biswa Sengupta, Karl Friston
We then show that these neuronal dynamics approximate natural gradient descent, a well-known optimisation algorithm from information geometry that follows the steepest descent of the objective in information space.
1 code implementation • 24 Sep 2019 • Noor Sajid, Philip J. Ball, Thomas Parr, Karl J. Friston
In this paper, we provide: 1) an accessible overview of the discrete-state formulation of active inference, highlighting natural behaviors in active inference that are generally engineered in RL; 2) an explicit discrete-state comparison between active inference and RL on an OpenAI gym baseline.