no code implementations • 13 Mar 2023 • Olivier Parisot, Thomas Tamisier
Reproducible images preprocessing is important in the field of computer vision, for efficient algorithms comparison or for new images corpus preparation.
no code implementations • 25 Jan 2022 • Etienne Brangbour, Pierrick Bruneau, Thomas Tamisier, Stéphane Marchand-Maillet
We present novel active learning strategies dedicated to providing a solution to the cold start stage, i. e. initializing the classification of a large set of data with no attached labels.
no code implementations • 7 Dec 2020 • Etienne Brangbour, Pierrick Bruneau, Stéphane Marchand-Maillet, Renaud Hostache, Marco Chini, Patrick Matgen, Thomas Tamisier
In this paper, we investigate the conversion of a Twitter corpus into geo-referenced raster cells holding the probability of the associated geographical areas of being flooded.
no code implementations • 12 Mar 2019 • Etienne Brangbour, Pierrick Bruneau, Stéphane Marchand-Maillet, Renaud Hostache, Patrick Matgen, Marco Chini, Thomas Tamisier
In this paper, we discuss the collection of a corpus associated to tropical storm Harvey, as well as its analysis from both spatial and topical perspectives.
no code implementations • LREC 2016 • Johann Poignant, Herv{\'e} Bredin, Claude Barras, Mickael Stefas, Pierrick Bruneau, Thomas Tamisier
In this paper, we claim that the CAMOMILE collaborative annotation platform (developed in the framework of the eponymous CHIST-ERA project) eases the organization of multimedia technology benchmarks, automating most of the campaign technical workflow and enabling collaborative (hence faster and cheaper) annotation of the evaluation data.
no code implementations • LREC 2016 • Johann Poignant, Mateusz Budnik, Herv{\'e} Bredin, Claude Barras, Mickael Stefas, Pierrick Bruneau, Gilles Adda, Laurent Besacier, Hazim Ekenel, Gil Francopoulo, Hern, Javier o, Joseph Mariani, Ramon Morros, Georges Qu{\'e}not, Sophie Rosset, Thomas Tamisier
In this paper, we describe the organization and the implementation of the CAMOMILE collaborative annotation framework for multimodal, multimedia, multilingual (3M) data.