no code implementations • 22 Jun 2021 • Deepthi Sreenivasaiah, Johannes Otterbach, Thomas Wollmann
Active learning helps learning from small amounts of data by suggesting the most promising samples for labeling.
1 code implementation • 30 May 2021 • Samuel von Baußnern, Johannes Otterbach, Adrian Loy, Mathieu Salzmann, Thomas Wollmann
We demonstrate the effectiveness of our approach using an ESPNet trained on the Cityscapes dataset as segmentation model, an affine Normalizing Flow as density estimator and use blue noise to ensure homogeneous sampling.
no code implementations • 8 May 2021 • Johannes Otterbach, Thomas Wollmann
Developing, scaling, and deploying modern Machine Learning solutions remains challenging for small- and middle-sized enterprises (SMEs).
no code implementations • 22 Jul 2018 • Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P. W. Pluim
The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of $\kappa$ = 0. 567, 95% CI [0. 464, 0. 671] between the predicted scores and the ground truth.
no code implementations • 24 Jul 2017 • Thomas Wollmann, Karl Rohr
We describe a novel method for effectively performing classification of whole-slide images and patient level breast cancer grading.