1 code implementation • 30 Jul 2023 • Debesh Jha, Vanshali Sharma, Debapriya Banik, Debayan Bhattacharya, Kaushiki Roy, Steven A. Hicks, Nikhil Kumar Tomar, Vajira Thambawita, Adrian Krenzer, Ge-Peng Ji, Sahadev Poudel, George Batchkala, Saruar Alam, Awadelrahman M. A. Ahmed, Quoc-Huy Trinh, Zeshan Khan, Tien-Phat Nguyen, Shruti Shrestha, Sabari Nathan, Jeonghwan Gwak, Ritika K. Jha, Zheyuan Zhang, Alexander Schlaefer, Debotosh Bhattacharjee, M. K. Bhuyan, Pradip K. Das, Deng-Ping Fan, Sravanthi Parsa, Sharib Ali, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Ulas Bagci
Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps.
1 code implementation • 16 Jul 2023 • Debesh Jha, Vanshali Sharma, Neethi Dasu, Nikhil Kumar Tomar, Steven Hicks, M. K. Bhuyan, Pradip K. Das, Michael A. Riegler, Pål Halvorsen, Ulas Bagci, Thomas de Lange
Integrating real-time artificial intelligence (AI) systems in clinical practices faces challenges such as scalability and acceptance.
1 code implementation • 30 May 2022 • Jan Andre Fagereng, Vajira Thambawita, Andrea M. Storås, Sravanthi Parasa, Thomas de Lange, Pål Halvorsen, Michael A. Riegler
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer.
1 code implementation • 23 Mar 2022 • Steven Hicks, Andrea Storås, Michael Riegler, Cise Midoglu, Malek Hammou, Thomas de Lange, Sravanthi Parasa, Pål Halvorsen, Inga Strümke
Deep learning has in recent years achieved immense success in all areas of computer vision and has the potential of assisting medical doctors in analyzing visual content for disease and other abnormalities.
no code implementations • 24 Feb 2022 • Sharib Ali, Noha Ghatwary, Debesh Jha, Ece Isik-Polat, Gorkem Polat, Chen Yang, Wuyang Li, Adrian Galdran, Miguel-Ángel González Ballester, Vajira Thambawita, Steven Hicks, Sahadev Poudel, Sang-Woong Lee, Ziyi Jin, Tianyuan Gan, Chenghui Yu, Jiangpeng Yan, Doyeob Yeo, Hyunseok Lee, Nikhil Kumar Tomar, Mahmood Haithmi, Amr Ahmed, Michael A. Riegler, Christian Daul, Pål Halvorsen, Jens Rittscher, Osama E. Salem, Dominique Lamarque, Renato Cannizzaro, Stefano Realdon, Thomas de Lange, James E. East
Polyps are well-known cancer precursors identified by colonoscopy.
1 code implementation • Nordic Machine Intelligence 2021 • Steven Hicks, Debesh Jha, Vajira Thambawita, Pål Halvorsen, Bjørn-Jostein Singstad, Sachin Gaur, Klas Pettersen, Morten Goodwin, Sravanthi Parasa, Thomas de Lange, Michael Riegler
MedAI: Transparency in Medical Image Segmentation is a challenge held for the first time at the Nordic AI Meet that focuses on medical image segmentation and transparency in machine learning (ML)-based systems.
1 code implementation • 26 Jul 2021 • Debesh Jha, Pia H. Smedsrud, Dag Johansen, Thomas de Lange, Håvard D. Johansen, Pål Halvorsen, Michael A. Riegler
To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation.
Ranked #1 on Medical Image Segmentation on CVC-VideoClinicDB
4 code implementations • 29 Jun 2021 • Vajira Thambawita, Pegah Salehi, Sajad Amouei Sheshkal, Steven A. Hicks, Hugo L. Hammer, Sravanthi Parasa, Thomas de Lange, Pål Halvorsen, Michael A. Riegler
The pipeline is evaluated using qualitative and quantitative comparisons between real and synthetic data to show that the style transfer technique used in our pipeline significantly improves the quality of the generated data and our method is better than other state-of-the-art GANs to prepare synthetic images when the size of training datasets are limited.
3 code implementations • 8 Jun 2021 • Sharib Ali, Debesh Jha, Noha Ghatwary, Stefano Realdon, Renato Cannizzaro, Osama E. Salem, Dominique Lamarque, Christian Daul, Michael A. Riegler, Kim V. Anonsen, Andreas Petlund, Pål Halvorsen, Jens Rittscher, Thomas de Lange, James E. East
To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as \textit{PolypGen}) curated by a team of computational scientists and expert gastroenterologists.
3 code implementations • 22 Apr 2021 • Debesh Jha, Nikhil Kumar Tomar, Sharib Ali, Michael A. Riegler, Håvard D. Johansen, Dag Johansen, Thomas de Lange, Pål Halvorsen
To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices.
Ranked #1 on Medical Image Segmentation on KvasirCapsule-SEG
Colorectal Polyps Characterization Instrument Recognition +4
no code implementations • 30 Dec 2020 • Debesh Jha, Steven A. Hicks, Krister Emanuelsen, Håvard Johansen, Dag Johansen, Thomas de Lange, Michael A. Riegler, Pål Halvorsen
Colorectal cancer is the third most common cause of cancer worldwide.
1 code implementation • 23 Oct 2020 • Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A. Hicks, VajiraThambawita, Enrique Garcia-Ceja, Michael A. Riegler, Thomas de Lange, Peter T. Schmidt, Håvard D. Johansen, Dag Johansen, Pål Halvorsen
Additionally, we provide a baseline for the segmentation of the GI tools to promote research and algorithm development.
Ranked #2 on Medical Image Segmentation on Kvasir-Instrument
no code implementations • 16 Nov 2019 • Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, Håvard D. Johansen
In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist.
Ranked #7 on Polyp Segmentation on Kvasir-SEG
6 code implementations • 16 Nov 2019 • Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Dag Johansen, Thomas de Lange, Pal Halvorsen, Havard D. Johansen
Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer.