1 code implementation • 15 Jul 2024 • Yulong Wang, Tianhao Shen, Lifeng Liu, Jian Xie
To address these limitations, we introduce Sibyl, a simple yet powerful LLM-based agent framework designed to tackle complex reasoning tasks by efficiently leveraging a minimal set of tools.
no code implementations • 4 Jul 2024 • Zhigen Li, Jianxiang Peng, Yanmeng Wang, Tianhao Shen, Minghui Zhang, Linxi Su, Shang Wu, Yihang Wu, Yuqian Wang, Ye Wang, Wei Hu, Jianfeng Li, Shaojun Wang, Jing Xiao, Deyi Xiong
To bridge this gap, we propose a new framework for planning-based conversational agents (PCA) powered by large language models (LLMs), which only requires humans to define tasks and goals for the LLMs.
no code implementations • 4 Jul 2024 • Bojian Jiang, Yi Jing, Tianhao Shen, Qing Yang, Deyi Xiong
To mitigate this issue, we propose a Deep Adversarial Automated Red Teaming (DART) framework in which the Red LLM and Target LLM are deeply and dynamically interacting with each other in an iterative manner.
no code implementations • 26 Jun 2024 • Dan Shi, Renren Jin, Tianhao Shen, Weilong Dong, Xinwei Wu, Deyi Xiong
To mitigate such knowledge conflicts, we propose a novel framework, IRCAN (Identifying and Reweighting Context-Aware Neurons) to capitalize on neurons that are crucial in processing contextual cues.
1 code implementation • 21 Jun 2024 • Leyan Wang, Yonggang Jin, Tianhao Shen, Tianyu Zheng, Xinrun Du, Chenchen Zhang, Wenhao Huang, Jiaheng Liu, Shi Wang, Ge Zhang, Liuyu Xiang, Zhaofeng He
As large language models (LLMs) continue to develop and gain widespread application, the ability of LLMs to exhibit empathy towards diverse group identities and understand their perspectives is increasingly recognized as critical.
no code implementations • 28 May 2024 • Andrew H. Lee, Sina J. Semnani, Galo Castillo-López, Gäel de Chalendar, Monojit Choudhury, Ashna Dua, Kapil Rajesh Kavitha, Sungkyun Kim, Prashant Kodali, Ponnurangam Kumaraguru, Alexis Lombard, Mehrad Moradshahi, Gihyun Park, Nasredine Semmar, Jiwon Seo, Tianhao Shen, Manish Shrivastava, Deyi Xiong, Monica S. Lam
However, after manual evaluation of the validation set, we find that by correcting gold label errors and improving dataset annotation schema, GPT-4 with our prompts can achieve (1) 89. 6%-96. 8% accuracy in DST, and (2) more than 99% correct response generation across different languages.
1 code implementation • 25 Feb 2024 • Ruibin Yuan, Hanfeng Lin, Yi Wang, Zeyue Tian, Shangda Wu, Tianhao Shen, Ge Zhang, Yuhang Wu, Cong Liu, Ziya Zhou, Ziyang Ma, Liumeng Xue, Ziyu Wang, Qin Liu, Tianyu Zheng, Yizhi Li, Yinghao Ma, Yiming Liang, Xiaowei Chi, Ruibo Liu, Zili Wang, Pengfei Li, Jingcheng Wu, Chenghua Lin, Qifeng Liu, Tao Jiang, Wenhao Huang, Wenhu Chen, Emmanouil Benetos, Jie Fu, Gus Xia, Roger Dannenberg, Wei Xue, Shiyin Kang, Yike Guo
It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.
1 code implementation • 22 Feb 2024 • Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, Xiang Yue
However, open-source models often lack the execution capabilities and iterative refinement of advanced systems like the GPT-4 Code Interpreter.
1 code implementation • 26 Dec 2023 • Tianhao Shen, Sun Li, Quan Tu, Deyi Xiong
We expect that RoleEval would highlight the significance of assessing role knowledge for large language models across various languages and cultural settings.
no code implementations • 26 Sep 2023 • Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu, Deyi Xiong
We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.
1 code implementation • 30 Jun 2023 • Mehrad Moradshahi, Tianhao Shen, Kalika Bali, Monojit Choudhury, Gaël de Chalendar, Anmol Goel, Sungkyun Kim, Prashant Kodali, Ponnurangam Kumaraguru, Nasredine Semmar, Sina J. Semnani, Jiwon Seo, Vivek Seshadri, Manish Shrivastava, Michael Sun, Aditya Yadavalli, Chaobin You, Deyi Xiong, Monica S. Lam
We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English-Hindi language.
no code implementations • 22 Jun 2022 • Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Hiroaki Hayashi, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza, Shailza Jolly, Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou
This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims.
no code implementations • 8 Feb 2021 • Boliang Zhang, Ying Lyu, Ning Ding, Tianhao Shen, Zhaoyang Jia, Kun Han, Kevin Knight
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9).