Search Results for author: Tianhe Yu

Found 34 papers, 16 papers with code

Contrastive Example-Based Control

1 code implementation24 Jul 2023 Kyle Hatch, Benjamin Eysenbach, Rafael Rafailov, Tianhe Yu, Ruslan Salakhutdinov, Sergey Levine, Chelsea Finn

In this paper, we propose a method for offline, example-based control that learns an implicit model of multi-step transitions, rather than a reward function.

Offline RL

Train Offline, Test Online: A Real Robot Learning Benchmark

1 code implementation1 Jun 2023 Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, Chelsea Finn, Abhinav Gupta

Three challenges limit the progress of robot learning research: robots are expensive (few labs can participate), everyone uses different robots (findings do not generalize across labs), and we lack internet-scale robotics data.

Offline Imitation Learning with Suboptimal Demonstrations via Relaxed Distribution Matching

no code implementations5 Mar 2023 Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, Stefano Ermon

In this case, a well-known issue is the distribution shift between the learned policy and the behavior policy that collects the offline data.

Continuous Control Imitation Learning

Scaling Robot Learning with Semantically Imagined Experience

no code implementations22 Feb 2023 Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh, Clayton Tan, Dee M, Jodilyn Peralta, Brian Ichter, Karol Hausman, Fei Xia

Specifically, we make use of the state of the art text-to-image diffusion models and perform aggressive data augmentation on top of our existing robotic manipulation datasets via inpainting various unseen objects for manipulation, backgrounds, and distractors with text guidance.

Data Augmentation

Offline Reinforcement Learning at Multiple Frequencies

no code implementations26 Jul 2022 Kaylee Burns, Tianhe Yu, Chelsea Finn, Karol Hausman

In this paper, we focus on one particular aspect of heterogeneity: learning from offline data collected at different control frequencies.

Offline RL reinforcement-learning +1

Latent-Variable Advantage-Weighted Policy Optimization for Offline RL

no code implementations16 Mar 2022 Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Yuan Gao, Jianhao Wang, Wenzhe Li, Bin Liang, Chelsea Finn, Chongjie Zhang

Offline reinforcement learning methods hold the promise of learning policies from pre-collected datasets without the need to query the environment for new transitions.

Continuous Control Offline RL +2

Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning

no code implementations29 Sep 2021 Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Chelsea Finn, Sergey Levine, Karol Hausman

However, these benefits come at a cost -- for data to be shared between tasks, each transition must be annotated with reward labels corresponding to other tasks.

Multi-Task Learning Offline RL +2

Conservative Data Sharing for Multi-Task Offline Reinforcement Learning

no code implementations NeurIPS 2021 Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, Chelsea Finn

We argue that a natural use case of offline RL is in settings where we can pool large amounts of data collected in various scenarios for solving different tasks, and utilize all of this data to learn behaviors for all the tasks more effectively rather than training each one in isolation.

Offline RL reinforcement-learning +1

Visual Adversarial Imitation Learning using Variational Models

no code implementations NeurIPS 2021 Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, Chelsea Finn

We consider a setting where an agent is provided a fixed dataset of visual demonstrations illustrating how to perform a task, and must learn to solve the task using the provided demonstrations and unsupervised environment interactions.

Imitation Learning Representation Learning

COMBO: Conservative Offline Model-Based Policy Optimization

4 code implementations NeurIPS 2021 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, Chelsea Finn

We overcome this limitation by developing a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-action tuples generated via rollouts under the learned model.

Offline RL

Variable-Shot Adaptation for Incremental Meta-Learning

no code implementations1 Jan 2021 Tianhe Yu, Xinyang Geng, Chelsea Finn, Sergey Levine

Few-shot meta-learning methods consider the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.

Meta-Learning Zero-Shot Learning

Information Transfer in Multi-Task Learning

no code implementations1 Jan 2021 Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, Chelsea Finn

Multi-task learning can leverage information learned by one task to benefit the training of other tasks.

Multi-Task Learning

Offline Reinforcement Learning from Images with Latent Space Models

1 code implementation21 Dec 2020 Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, Chelsea Finn

In this work, we build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.

Offline RL reinforcement-learning +1

Variable-Shot Adaptation for Online Meta-Learning

no code implementations14 Dec 2020 Tianhe Yu, Xinyang Geng, Chelsea Finn, Sergey Levine

Few-shot meta-learning methods consider the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.

Meta-Learning Zero-Shot Learning

Measuring and Harnessing Transference in Multi-Task Learning

no code implementations29 Oct 2020 Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, Chelsea Finn

Multi-task learning can leverage information learned by one task to benefit the training of other tasks.

Multi-Task Learning

Gradient Surgery for Multi-Task Learning

9 code implementations NeurIPS 2020 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, Chelsea Finn

While deep learning and deep reinforcement learning (RL) systems have demonstrated impressive results in domains such as image classification, game playing, and robotic control, data efficiency remains a major challenge.

Image Classification Multi-Task Learning +1

Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning

8 code implementations24 Oct 2019 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya Bellathur, Karol Hausman, Chelsea Finn, Sergey Levine

Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors.

Meta-Learning Meta Reinforcement Learning +3

Mint: Matrix-Interleaving for Multi-Task Learning

no code implementations25 Sep 2019 Tianhe Yu, Saurabh Kumar, Eric Mitchell, Abhishek Gupta, Karol Hausman, Sergey Levine, Chelsea Finn

Deep learning enables training of large and flexible function approximators from scratch at the cost of large amounts of data.

Multi-Task Learning reinforcement-learning +1

Unsupervised Visuomotor Control through Distributional Planning Networks

1 code implementation14 Feb 2019 Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn

While reinforcement learning (RL) has the potential to enable robots to autonomously acquire a wide range of skills, in practice, RL usually requires manual, per-task engineering of reward functions, especially in real world settings where aspects of the environment needed to compute progress are not directly accessible.

reinforcement-learning Reinforcement Learning (RL)

One-Shot Hierarchical Imitation Learning of Compound Visuomotor Tasks

no code implementations25 Oct 2018 Tianhe Yu, Pieter Abbeel, Sergey Levine, Chelsea Finn

We consider the problem of learning multi-stage vision-based tasks on a real robot from a single video of a human performing the task, while leveraging demonstration data of subtasks with other objects.

Imitation Learning

One-Shot Visual Imitation Learning via Meta-Learning

3 code implementations14 Sep 2017 Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, Sergey Levine

In this work, we present a meta-imitation learning method that enables a robot to learn how to learn more efficiently, allowing it to acquire new skills from just a single demonstration.

Imitation Learning Meta-Learning

Generalizing Skills with Semi-Supervised Reinforcement Learning

no code implementations1 Dec 2016 Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine

We evaluate our method on challenging tasks that require control directly from images, and show that our approach can improve the generalization of a learned deep neural network policy by using experience for which no reward function is available.

reinforcement-learning Reinforcement Learning (RL)

Cannot find the paper you are looking for? You can Submit a new open access paper.