Search Results for author: Tianshui Chen

Found 44 papers, 28 papers with code

Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration

1 code implementation9 Jul 2024 Tianshui Chen, Weihang Wang, Tao Pu, Jinghui Qin, Zhijing Yang, Jie Liu, Liang Lin

To overcome these limitations, we propose the Dynamic Correlation Learning and Regularization (DCLR) algorithm, which leverages multi-grained semantic correlations to better model semantic confusion for adaptive regularization.

Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior

1 code implementation2 Jun 2024 Yukai Shi, Yupei Lin, Pengxu Wei, Xiaoyu Xian, Tianshui Chen, Liang Lin

Large-scale trained diffusion models have a strong generative prior that enables real-world modeling of images to generate diverse and realistic images.

Data Augmentation Diversity +1

Adaptive Global-Local Representation Learning and Selection for Cross-Domain Facial Expression Recognition

1 code implementation20 Jan 2024 Yuefang Gao, Yuhao Xie, Zeke Zexi Hu, Tianshui Chen, Liang Lin

Specifically, the framework consists of separate global-local adversarial learning modules that learn domain-invariant global and local features independently.

Cross-Domain Facial Expression Recognition Model Optimization +2

Learning Adaptive Spatial Coherent Correlations for Speech-Preserving Facial Expression Manipulation

1 code implementation CVPR 2024 Tianshui Chen, Jianman Lin, Zhijing Yang, Chunmei Qing, Liang Lin

To capitalize on this insight we propose a novel adaptive spatial coherent correlation learning (ASCCL) algorithm which models the aforementioned correlation as an explicit metric and integrates the metric to supervise manipulating facial expression and meanwhile better preserving the facial animation of spoken contents.

Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial Animation

no code implementations18 Dec 2023 Hui Fu, Zeqing Wang, Ke Gong, Keze Wang, Tianshui Chen, Haojie Li, Haifeng Zeng, Wenxiong Kang

Moreover, to facilitate disentangled representation learning, we introduce four well-designed constraints: an auxiliary style classifier, an auxiliary inverse classifier, a content contrastive loss, and a pair of latent cycle losses, which can effectively contribute to the construction of the identity-related style space and semantic-related content space.

Disentanglement

MotionCtrl: A Unified and Flexible Motion Controller for Video Generation

1 code implementation6 Dec 2023 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen, Menghan Xia, Ping Luo, Ying Shan

Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement.

Object Video Generation

SQLNet: Scale-Modulated Query and Localization Network for Few-Shot Class-Agnostic Counting

1 code implementation16 Nov 2023 Hefeng Wu, Yandong Chen, Lingbo Liu, Tianshui Chen, Keze Wang, Liang Lin

In the localization stage, the Scale-aware Multi-head Localization (SAML) module utilizes the query tensor to predict the confidence, location, and size of each potential object.

Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation

1 code implementation23 Sep 2023 Tao Pu, Tianshui Chen, Hefeng Wu, Yongyi Lu, Liang Lin

In this work, we propose a spatial-temporal knowledge-embedded transformer (STKET) that incorporates the prior spatial-temporal knowledge into the multi-head cross-attention mechanism to learn more representative relationship representations.

Graph Generation Object +2

RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs

1 code implementation14 Aug 2023 Zhouxia Wang, Jiawei Zhang, Tianshui Chen, Wenping Wang, Ping Luo

In this work, we propose RestoreFormer++, which on the one hand introduces fully-spatial attention mechanisms to model the contextual information and the interplay with the priors, and on the other hand, explores an extending degrading model to help generate more realistic degraded face images to alleviate the synthetic-to-real-world gap.

Blind Face Restoration

Perception and Semantic Aware Regularization for Sequential Confidence Calibration

1 code implementation CVPR 2023 Zhenghua Peng, Yu Luo, Tianshui Chen, Keke Xu, Shuangping Huang

In this work, we find tokens/sequences with high perception and semantic correlations with the target ones contain more correlated and effective information and thus facilitate more effective regularization.

Language Modelling speech-recognition +1

Open-World Pose Transfer via Sequential Test-Time Adaption

no code implementations20 Mar 2023 Junyang Chen, Xiaoyu Xian, Zhijing Yang, Tianshui Chen, Yongyi Lu, Yukai Shi, Jinshan Pan, Liang Lin

In open-world conditions, the pose transfer task raises various independent signals: OOD appearance and skeleton, which need to be extracted and distributed in speciality.

Motion Synthesis Person Re-Identification +1

OccluMix: Towards De-Occlusion Virtual Try-on by Semantically-Guided Mixup

2 code implementations3 Jan 2023 Zhijing Yang, Junyang Chen, Yukai Shi, Hao Li, Tianshui Chen, Liang Lin

Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities.

Semantic Parsing Virtual Try-on

Dual-Perspective Semantic-Aware Representation Blending for Multi-Label Image Recognition with Partial Labels

1 code implementation26 May 2022 Tao Pu, Tianshui Chen, Hefeng Wu, Yukai Shi, Zhijing Yang, Liang Lin

Specifically, an instance-perspective representation blending (IPRB) module is designed to blend the representations of the known labels in an image with the representations of the corresponding unknown labels in another image to complement these unknown labels.

Multi-Label Image Recognition Multi-label Image Recognition with Partial Labels

Heterogeneous Semantic Transfer for Multi-label Recognition with Partial Labels

1 code implementation23 May 2022 Tianshui Chen, Tao Pu, Lingbo Liu, Yukai Shi, Zhijing Yang, Liang Lin

Multi-label image recognition with partial labels (MLR-PL), in which some labels are known while others are unknown for each image, may greatly reduce the cost of annotation and thus facilitate large-scale MLR.

Multi-Label Image Recognition Multi-label Image Recognition with Partial Labels

Exploring Negatives in Contrastive Learning for Unpaired Image-to-Image Translation

no code implementations23 Apr 2022 Yupei Lin, Sen Zhang, Tianshui Chen, Yongyi Lu, Guangping Li, Yukai Shi

Recently, contrastive learning (CL) has been used to further investigate the image correspondence in unpaired image translation by using patch-based positive/negative learning.

Contrastive Learning Image-to-Image Translation +1

Semantic Representation and Dependency Learning for Multi-Label Image Recognition

no code implementations8 Apr 2022 Tao Pu, Mingzhan Sun, Hefeng Wu, Tianshui Chen, Ling Tian, Liang Lin

We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions to regularize the network training.

Multi-Label Image Recognition Object +2

Structured Semantic Transfer for Multi-Label Recognition with Partial Labels

1 code implementation21 Dec 2021 Tianshui Chen, Tao Pu, Hefeng Wu, Yuan Xie, Liang Lin

To reduce the annotation cost, we propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels, i. e., merely some labels are known while other labels are missing (also called unknown labels) per image.

Multi-Label Image Recognition Multi-label Image Recognition with Partial Labels

AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition

1 code implementation29 Dec 2020 Tao Pu, Tianshui Chen, Yuan Xie, Hefeng Wu, Liang Lin

In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition.

Facial Expression Recognition Facial Expression Recognition (FER) +1

Knowledge-Guided Multi-Label Few-Shot Learning for General Image Recognition

no code implementations20 Sep 2020 Tianshui Chen, Liang Lin, Riquan Chen, Xiaolu Hui, Hefeng Wu

The framework exploits prior knowledge to guide adaptive information propagation among different categories to facilitate multi-label analysis and reduce the dependency of training samples.

Few-Shot Learning Multi-Label Image Recognition +1

Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition

1 code implementation3 Aug 2020 Yuan Xie, Tianshui Chen, Tao Pu, Hefeng Wu, Liang Lin

However, most of these works focus on holistic feature adaptation, and they ignore local features that are more transferable across different datasets.

Cross-Domain Facial Expression Recognition Facial Expression Recognition (FER)

Fine-Grained Image Captioning with Global-Local Discriminative Objective

1 code implementation21 Jul 2020 Jie Wu, Tianshui Chen, Hefeng Wu, Zhi Yang, Guangchun Luo, Liang Lin

This is primarily due to (i) the conservative characteristic of traditional training objectives that drives the model to generate correct but hardly discriminative captions for similar images and (ii) the uneven word distribution of the ground-truth captions, which encourages generating highly frequent words/phrases while suppressing the less frequent but more concrete ones.

Descriptive Image Captioning +2

Efficient Crowd Counting via Structured Knowledge Transfer

2 code implementations23 Mar 2020 Lingbo Liu, Jiaqi Chen, Hefeng Wu, Tianshui Chen, Guanbin Li, Liang Lin

Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications.

Crowd Counting Transfer Learning

Knowledge Graph Transfer Network for Few-Shot Recognition

1 code implementation21 Nov 2019 Riquan Chen, Tianshui Chen, Xiaolu Hui, Hefeng Wu, Guanbin Li, Liang Lin

In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN).

Few-Shot Image Classification Few-Shot Learning +2

Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition

2 code implementations ICCV 2019 Tianshui Chen, Muxin Xu, Xiaolu Hui, Hefeng Wu, Liang Lin

Recognizing multiple labels of images is a practical and challenging task, and significant progress has been made by searching semantic-aware regions and modeling label dependency.

Graph Representation Learning Multi-Label Classification +2

Semi-Supervised Video Salient Object Detection Using Pseudo-Labels

1 code implementation ICCV 2019 Pengxiang Yan, Guanbin Li, Yuan Xie, Zhen Li, Chuan Wang, Tianshui Chen, Liang Lin

Specifically, we present an effective video saliency detector that consists of a spatial refinement network and a spatiotemporal module.

 Ranked #1 on Video Salient Object Detection on VOS-T (using extra training data)

object-detection Salient Object Detection +2

Knowledge-Embedded Routing Network for Scene Graph Generation

3 code implementations CVPR 2019 Tianshui Chen, Weihao Yu, Riquan Chen, Liang Lin

More specifically, we show that the statistical correlations between objects appearing in images and their relationships, can be explicitly represented by a structured knowledge graph, and a routing mechanism is learned to propagate messages through the graph to explore their interactions.

Graph Generation Scene Graph Generation

Neural Task Planning with And-Or Graph Representations

no code implementations25 Aug 2018 Tianshui Chen, Riquan Chen, Lin Nie, Xiaonan Luo, Xiaobai Liu, Liang Lin

This paper focuses on semantic task planning, i. e., predicting a sequence of actions toward accomplishing a specific task under a certain scene, which is a new problem in computer vision research.

Common Sense Reasoning valid

Fine-Grained Representation Learning and Recognition by Exploiting Hierarchical Semantic Embedding

1 code implementation14 Aug 2018 Tianshui Chen, Wenxi Wu, Yuefang Gao, Le Dong, Xiaonan Luo, Liang Lin

In this work, we investigate simultaneously predicting categories of different levels in the hierarchy and integrating this structured correlation information into the deep neural network by developing a novel Hierarchical Semantic Embedding (HSE) framework.

Fine-Grained Image Classification Fine-Grained Image Recognition +1

Deep Reasoning with Knowledge Graph for Social Relationship Understanding

1 code implementation2 Jul 2018 Zhouxia Wang, Tianshui Chen, Jimmy Ren, Weihao Yu, Hui Cheng, Liang Lin

And this structured knowledge can be efficiently integrated into the deep neural network architecture to promote social relationship understanding by an end-to-end trainable Graph Reasoning Model (GRM), in which a propagation mechanism is learned to propagate node message through the graph to explore the interaction between persons of interest and the contextual objects.

Visual Social Relationship Recognition

Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

2 code implementations20 Dec 2017 Tianshui Chen, Liang Lin, WangMeng Zuo, Xiaonan Luo, Lei Zhang

In this work, aiming at a general and comprehensive way for neural network acceleration, we develop a Wavelet-like Auto-Encoder (WAE) that decomposes the original input image into two low-resolution channels (sub-images) and incorporate the WAE into the classification neural networks for joint training.

Classification General Classification +1

Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition

no code implementations20 Dec 2017 Tianshui Chen, Zhouxia Wang, Guanbin Li, Liang Lin

Recognizing multiple labels of images is a fundamental but challenging task in computer vision, and remarkable progress has been attained by localizing semantic-aware image regions and predicting their labels with deep convolutional neural networks.

Multi-Label Image Recognition reinforcement-learning +2

Multi-label Image Recognition by Recurrently Discovering Attentional Regions

no code implementations ICCV 2017 Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, Liang Lin

This paper proposes a novel deep architecture to address multi-label image recognition, a fundamental and practical task towards general visual understanding.

General Classification Multi-Label Image Classification +2

Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning

no code implementations4 Oct 2017 Dongyu Zhang, Liang Lin, Tianshui Chen, Xian Wu, Wenwei Tan, Ebroul Izquierdo

Sketch portrait generation benefits a wide range of applications such as digital entertainment and law enforcement.

Representation Learning

Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction

no code implementations15 Jul 2017 Liang Lin, Lili Huang, Tianshui Chen, Yukang Gan, Hui Cheng

This paper aims at task-oriented action prediction, i. e., predicting a sequence of actions towards accomplishing a specific task under a certain scene, which is a new problem in computer vision research.

Common Sense Reasoning valid

Learning to Segment Object Candidates via Recursive Neural Networks

no code implementations4 Dec 2016 Tianshui Chen, Liang Lin, Xian Wu, Nong Xiao, Xiaonan Luo

To avoid the exhaustive search over locations and scales, current state-of-the-art object detection systems usually involve a crucial component generating a batch of candidate object proposals from images.

Object object-detection +1

Character Proposal Network for Robust Text Extraction

no code implementations13 Feb 2016 Shuye Zhang, Mude Lin, Tianshui Chen, Lianwen Jin, Liang Lin

Maximally stable extremal regions (MSER), which is a popular method to generate character proposals/candidates, has shown superior performance in scene text detection.

Scene Text Detection Text Detection

DISC: Deep Image Saliency Computing via Progressive Representation Learning

no code implementations13 Nov 2015 Tianshui Chen, Liang Lin, Lingbo Liu, Xiaonan Luo, Xuelong. Li

Our DISC framework is capable of uniformly highlighting the objects-of-interest from complex background while preserving well object details.

object-detection Representation Learning +2

Cannot find the paper you are looking for? You can Submit a new open access paper.