no code implementations • 28 Feb 2024 • Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, Xia Hu
In this work, we propose a Natural Language Prompt Encapsulation (Nano-Capsulator) framework compressing original prompts into NL formatted Capsule Prompt while maintaining the prompt utility and transferability.
no code implementations • 15 Oct 2021 • Marc Roig Vilamala, Tianwei Xing, Harrison Taylor, Luis Garcia, Mani Srivastava, Lance Kaplan, Alun Preece, Angelika Kimmig, Federico Cerutti
We also demonstrate that our approach is capable of training even with a dataset that has a moderate proportion of noisy data.
no code implementations • 27 Oct 2020 • Katie Barrett-Powell, Jack Furby, Liam Hiley, Marc Roig Vilamala, Harrison Taylor, Federico Cerutti, Alun Preece, Tianwei Xing, Luis Garcia, Mani Srivastava, Dave Braines
We present an experimentation platform for coalition situational understanding research that highlights capabilities in explainable artificial intelligence/machine learning (AI/ML) and integration of symbolic and subsymbolic AI/ML approaches for event processing.
BIG-bench Machine Learning Explainable artificial intelligence
no code implementations • 7 Sep 2020 • Marc Roig Vilamala, Harrison Taylor, Tianwei Xing, Luis Garcia, Mani Srivastava, Lance Kaplan, Alun Preece, Angelika Kimmig, Federico Cerutti
We demonstrate this comparing our approach against a pure neural network approach on a dataset based on Urban Sounds 8K.
no code implementations • 15 Jul 2017 • Jeng-Hau Lin, Tianwei Xing, Ritchie Zhao, Zhiru Zhang, Mani Srivastava, Zhuowen Tu, Rajesh K. Gupta
State-of-the-art convolutional neural networks are enormously costly in both compute and memory, demanding massively parallel GPUs for execution.
no code implementations • 30 Dec 2015 • Jie Xu, Tianwei Xing, Mihaela van der Schaar
Given the variability in student learning it is becoming increasingly important to tailor courses as well as course sequences to student needs.