1 code implementation • 24 Nov 2024 • Gustav Müller-Franzes, Firas Khader, Robert Siepmann, Tianyu Han, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis.
Ranked #5 on
Lung Nodule Classification
on LIDC-IDRI
(AUC metric, using extra
training data)
no code implementations • 25 Aug 2024 • Felix J. Dorfner, Amin Dada, Felix Busch, Marcus R. Makowski, Tianyu Han, Daniel Truhn, Jens Kleesiek, Madhumita Sushil, Jacqueline Lammert, Lisa C. Adams, Keno K. Bressem
Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data.
no code implementations • 20 Aug 2024 • Tianyu Han, Bo wang
Our main results guarantee both safety and local asymptotic stability for the closed-loop system.
no code implementations • 23 Jun 2024 • Tianyu Han, Sven Nebelung, Firas Khader, Jakob Nikolas Kather, Daniel Truhn
Denoising diffusion models offer a promising approach to accelerating magnetic resonance imaging (MRI) and producing diagnostic-level images in an unsupervised manner.
no code implementations • 3 Jun 2024 • Firas Khader, Omar S. M. El Nahhas, Tianyu Han, Gustav Müller-Franzes, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The Transformer model has been pivotal in advancing fields such as natural language processing, speech recognition, and computer vision.
1 code implementation • 25 Jan 2024 • Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Löser, Hugo JWL. Aerts, Jakob Nikolas Kather, Daniel Truhn, Keno Bressem
However, all models struggled significantly in tasks requiring the identification of missing information, highlighting a critical area for improvement in clinical data interpretation.
no code implementations • 24 Nov 2023 • Felix Busch, Tianyu Han, Marcus Makowski, Daniel Truhn, Keno Bressem, Lisa Adams
The study evaluates and compares GPT-4 and GPT-4Vision for radiological tasks, suggesting GPT-4Vision may recognize radiological features from images, thereby enhancing its diagnostic potential over text-based descriptions.
1 code implementation • 29 Sep 2023 • Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Kather, Daniel Truhn
Current techniques for evaluating deep learning models cannot visualize confounding factors at a diagnostic level.
1 code implementation • 29 Sep 2023 • Tianyu Han, Sven Nebelung, Firas Khader, Tianci Wang, Gustav Mueller-Franzes, Christiane Kuhl, Sebastian Försch, Jens Kleesiek, Christoph Haarburger, Keno K. Bressem, Jakob Nikolas Kather, Daniel Truhn
We validate our findings in a set of 1, 038 incorrect biomedical facts.
1 code implementation • 27 Aug 2023 • Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas Kather, Daniel Truhn, Sven Nebelung
A knowledge gap persists between machine learning (ML) developers (e. g., data scientists) and practitioners (e. g., clinicians), hampering the full utilization of ML for clinical data analysis.
no code implementations • 11 May 2023 • Firas Khader, Gustav Müller-Franzes, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
X-rays are widely available and even if the CT reconstructed from these radiographs is not a replacement of a complete CT in the diagnostic setting, it might serve to spare the patients from radiation where a CT is only acquired for rough measurements such as determining organ size.
no code implementations • 11 May 2023 • Firas Khader, Jakob Nikolas Kather, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
However, while the conventional transformer allows for a simultaneous processing of a large set of input tokens, the computational demand scales quadratically with the number of input tokens and thus quadratically with the number of image patches.
1 code implementation • 14 Apr 2023 • Tianyu Han, Lisa C. Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexander Löser, Daniel Truhn, Keno K. Bressem
As large language models (LLMs) like OpenAI's GPT series continue to make strides, we witness the emergence of artificial intelligence applications in an ever-expanding range of fields.
1 code implementation • 18 Dec 2022 • Firas Khader, Gustav Mueller-Franzes, Tianci Wang, Tianyu Han, Soroosh Tayebi Arasteh, Christoph Haarburger, Johannes Stegmaier, Keno Bressem, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data.
1 code implementation • 14 Dec 2022 • Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data.
1 code implementation • 7 Nov 2022 • Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0. 91 vs. 0. 95 without vs. with synthetic data).
no code implementations • 7 Oct 2022 • Chuqin Geng, Haolin Ye, Yixuan Li, Tianyu Han, Brigitte Pientka, Xujie Si
Strong static type systems help programmers eliminate many errors without much burden of supplying type annotations.
1 code implementation • 22 Nov 2021 • Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Volkmar Schulz, Christiane Kuhl, Sven Nebelung, Daniel Truhn
We present a generic solution for this problem by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation optimization approach.
1 code implementation • 25 Nov 2020 • Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus Zimmermann, Maximilian Schulze-Hagen, Michael Ho, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Daniel Truhn
Contrary to previous research on adversarially trained models, we found that the accuracy of such models was equal to standard models when sufficiently large datasets and dual batch norm training were used.