Search Results for author: Tianyu Yu

Found 16 papers, 12 papers with code

Process Reinforcement through Implicit Rewards

2 code implementations3 Feb 2025 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan YAO, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, BoWen Zhou, Ning Ding

While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized.

Math Reinforcement Learning (RL)

EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents

1 code implementation21 Jan 2025 Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu Yu, Weize Chen, Lei Shi, Maosong Sun

To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks.

Attribute Question Answering

Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions

no code implementations11 Dec 2024 Jiarui Zhang, Ollie Liu, Tianyu Yu, Jinyi Hu, Willie Neiswanger

For instance, Euclid outperforms the best closed-source model, Gemini-1. 5-Pro, by up to 58. 56% on certain Geoperception benchmark tasks and 10. 65% on average across all tasks.

Medical Image Analysis

A Topic-level Self-Correctional Approach to Mitigate Hallucinations in MLLMs

no code implementations26 Nov 2024 Lehan He, Zeren Chen, Zhelun Shi, Tianyu Yu, Jing Shao, Lu Sheng

Through a deconfounded strategy that replaces each topic within the response with the best or worst alternatives generated by the model itself, TPO creates more contrasting pairwise preference feedback, enhancing the feedback quality without human or proprietary model intervention.

Hallucination

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

2 code implementations3 Aug 2024 Yuan YAO, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding Hu, Zhi Zheng, Jie zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, Maosong Sun

The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of AI research and industry, shedding light on a promising path toward the next AI milestone.

Hallucination Multiple-choice +3

UltraWiki: Ultra-fine-grained Entity Set Expansion with Negative Seed Entities

1 code implementation7 Mar 2024 Yangning Li, Qingsong Lv, Tianyu Yu, Yinghui Li, Shulin Huang, Tingwei Lu, Xuming Hu, Wenhao Jiang, Hai-Tao Zheng, Hui Wang

To solve this issue, we first introduce negative seed entities in the inputs, which belong to the same fine-grained semantic class as the positive seed entities but differ in certain attributes.

Attribute Contrastive Learning +1

Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants

2 code implementations1 Oct 2023 Tianyu Yu, Jinyi Hu, Yuan YAO, Haoye Zhang, Yue Zhao, Chongyi Wang, Shan Wang, Yinxv Pan, Jiao Xue, Dahai Li, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun

The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following.

Instruction Following

Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages

2 code implementations23 Aug 2023 Jinyi Hu, Yuan YAO, Chongyi Wang, Shan Wang, Yinxu Pan, Qianyu Chen, Tianyu Yu, Hanghao Wu, Yue Zhao, Haoye Zhang, Xu Han, Yankai Lin, Jiao Xue, Dahai Li, Zhiyuan Liu, Maosong Sun

Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i. e., lack of large-scale, high-quality image-text data).

Image to text Language Modeling +3

MESED: A Multi-modal Entity Set Expansion Dataset with Fine-grained Semantic Classes and Hard Negative Entities

1 code implementation27 Jul 2023 Yangning Li, Tingwei Lu, Yinghui Li, Tianyu Yu, Shulin Huang, Hai-Tao Zheng, Rui Zhang, Jun Yuan

The Entity Set Expansion (ESE) task aims to expand a handful of seed entities with new entities belonging to the same semantic class.

Knowledge-augmented Few-shot Visual Relation Detection

no code implementations9 Mar 2023 Tianyu Yu, Yangning Li, Jiaoyan Chen, Yinghui Li, Hai-Tao Zheng, Xi Chen, Qingbin Liu, Wenqiang Liu, Dongxiao Huang, Bei Wu, Yexin Wang

Inspired by this, we devise a knowledge-augmented, few-shot VRD framework leveraging both textual knowledge and visual relation knowledge to improve the generalization ability of few-shot VRD.

Diversity Few-Shot Learning +3

Visually Grounded Commonsense Knowledge Acquisition

1 code implementation22 Nov 2022 Yuan YAO, Tianyu Yu, Ao Zhang, Mengdi Li, Ruobing Xie, Cornelius Weber, Zhiyuan Liu, Hai-Tao Zheng, Stefan Wermter, Tat-Seng Chua, Maosong Sun

In this work, we present CLEVER, which formulates CKE as a distantly supervised multi-instance learning problem, where models learn to summarize commonsense relations from a bag of images about an entity pair without any human annotation on image instances.

Language Modelling

Embracing Ambiguity: Improving Similarity-oriented Tasks with Contextual Synonym Knowledge

no code implementations20 Nov 2022 Yangning Li, Jiaoyan Chen, Yinghui Li, Tianyu Yu, Xi Chen, Hai-Tao Zheng

Extensive experiments demonstrate that PICSO can dramatically outperform the original PLMs and the other knowledge and synonym injection models on four different similarity-oriented tasks.

Entity Linking Language Modeling +5

Contrastive Learning with Hard Negative Entities for Entity Set Expansion

1 code implementation16 Apr 2022 Yinghui Li, Yangning Li, Yuxin He, Tianyu Yu, Ying Shen, Hai-Tao Zheng

In addition, we propose the ProbExpan, a novel probabilistic ESE framework utilizing the entity representation obtained by the aforementioned language model to expand entities.

Contrastive Learning Language Modeling +1

Cannot find the paper you are looking for? You can Submit a new open access paper.