Search Results for author: Tien Do

Found 8 papers, 6 papers with code

Improved Scene Landmark Detection for Camera Localization

1 code implementation31 Jan 2024 Tien Do, Sudipta N. Sinha

To mitigate the capacity issue, we propose to split the landmarks into subgroups and train a separate network for each subgroup.

Camera Localization Pose Estimation +1

Egocentric Scene Understanding via Multimodal Spatial Rectifier

1 code implementation CVPR 2022 Tien Do, Khiem Vuong, Hyun Soo Park

We present a multimodal spatial rectifier that stabilizes the egocentric images to a set of reference directions, which allows learning a coherent visual representation.

Scene Understanding Surface Normal Estimation

Learning To Detect Scene Landmarks for Camera Localization

no code implementations CVPR 2022 Tien Do, Ondrej Miksik, Joseph DeGol, Hyun Soo Park, Sudipta N. Sinha

Our key idea is to implicitly encode the appearance of a sparse yet salient set of 3D scene points into a convolutional neural network (CNN) that can detect these scene points in query images whenever they are visible.

Camera Localization Image Retrieval +2

Ego4D: Around the World in 3,000 Hours of Egocentric Video

8 code implementations CVPR 2022 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei HUANG, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik

We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite.

De-identification Ethics

Deep Multi-view Depth Estimation with Predicted Uncertainty

1 code implementation19 Nov 2020 Tong Ke, Tien Do, Khiem Vuong, Kourosh Sartipi, Stergios I. Roumeliotis

In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks.

Depth Estimation Optical Flow Estimation

Deep Depth Estimation from Visual-Inertial SLAM

1 code implementation31 Jul 2020 Kourosh Sartipi, Tien Do, Tong Ke, Khiem Vuong, Stergios I. Roumeliotis

This paper addresses the problem of learning to complete a scene's depth from sparse depth points and images of indoor scenes.

Depth Estimation Simultaneous Localization and Mapping

Surface Normal Estimation of Tilted Images via Spatial Rectifier

1 code implementation ECCV 2020 Tien Do, Khiem Vuong, Stergios I. Roumeliotis, Hyun Soo Park

Our two main hypotheses are: (1) visual scene layout is indicative of the gravity direction; and (2) not all surfaces are equally represented by a learned estimator due to the structured distribution of the training data, thus, there exists a transformation for each tilted image that is more responsive to the learned estimator than others.

Data Augmentation Surface Normal Estimation

Author Name Disambiguation by Using Deep Neural Network

no code implementations27 Feb 2015 Hung Nghiep Tran, Tin Huynh, Tien Do

In this research, we evaluate the proposed method on a dataset containing Vietnamese author names.

Cannot find the paper you are looking for? You can Submit a new open access paper.