Search Results for author: Tim Cooijmans

Found 7 papers, 6 papers with code

Counterpoint by Convolution

3 code implementations18 Mar 2019 Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, Douglas Eck

Machine learning models of music typically break up the task of composition into a chronological process, composing a piece of music in a single pass from beginning to end.

Music Generation Music Modeling

On the Variance of Unbiased Online Recurrent Optimization

no code implementations6 Feb 2019 Tim Cooijmans, James Martens

The recently proposed Unbiased Online Recurrent Optimization algorithm (UORO, arXiv:1702. 05043) uses an unbiased approximation of RTRL to achieve fully online gradient-based learning in RNNs.

Harmonic Recomposition using Conditional Autoregressive Modeling

1 code implementation18 Nov 2018 Kyle Kastner, Rithesh Kumar, Tim Cooijmans, Aaron Courville

We demonstrate a conditional autoregressive pipeline for efficient music recomposition, based on methods presented in van den Oord et al.(2017).

Theano: A Python framework for fast computation of mathematical expressions

1 code implementation9 May 2016 The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements.

Dimensionality Reduction General Classification

Recurrent Batch Normalization

3 code implementations30 Mar 2016 Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, Aaron Courville

We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks.

General Classification Language Modelling +3

Dynamic Capacity Networks

1 code implementation24 Nov 2015 Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle, Aaron Courville

The low-capacity sub-networks are applied across most of the input, but also provide a guide to select a few portions of the input on which to apply the high-capacity sub-networks.

Cannot find the paper you are looking for? You can Submit a new open access paper.