no code implementations • 10 Jul 2024 • Ting Fang Tan, Kabilan Elangovan, Jasmine Ong, Nigam Shah, Joseph Sung, Tien Yin Wong, Lan Xue, Nan Liu, Haibo Wang, Chang Fu Kuo, Simon Chesterman, Zee Kin Yeong, Daniel SW Ting
A comprehensive qualitative evaluation framework for large language models (LLM) in healthcare that expands beyond traditional accuracy and quantitative metrics needed.
no code implementations • 28 May 2024 • Mingxuan Liu, Yilin Ning, Salinelat Teixayavong, Xiaoxuan Liu, Mayli Mertens, Yuqing Shang, Xin Li, Di Miao, Jie Xu, Daniel Shu Wei Ting, Lionel Tim-Ee Cheng, Jasmine Chiat Ling Ong, Zhen Ling Teo, Ting Fang Tan, Narrendar RaviChandran, Fei Wang, Leo Anthony Celi, Marcus Eng Hock Ong, Nan Liu
The ethical integration of Artificial Intelligence (AI) in healthcare necessitates addressing fairness-a concept that is highly context-specific across medical fields.
no code implementations • 15 Feb 2024 • Ting Fang Tan, Kabilan Elangovan, Liyuan Jin, Yao Jie, Li Yong, Joshua Lim, Stanley Poh, Wei Yan Ng, Daniel Lim, Yuhe Ke, Nan Liu, Daniel Shu Wei Ting
200 responses to the testing dataset were generated by 5 fine-tuned LLMs for evaluation.
no code implementations • 26 Apr 2023 • Mingxuan Liu, Yilin Ning, Salinelat Teixayavong, Mayli Mertens, Jie Xu, Daniel Shu Wei Ting, Lionel Tim-Ee Cheng, Jasmine Chiat Ling Ong, Zhen Ling Teo, Ting Fang Tan, Ravi Chandran Narrendar, Fei Wang, Leo Anthony Celi, Marcus Eng Hock Ong, Nan Liu
In this paper, we discuss the misalignment between technical and clinical perspectives of AI fairness, highlight the barriers to AI fairness' translation to healthcare, advocate multidisciplinary collaboration to bridge the knowledge gap, and provide possible solutions to address the clinical concerns pertaining to AI fairness.