no code implementations • CCL 2020 • Tong Huang, Bin Li, Peiyi Yan, Tingting Ji, Weiguang Qu
对话分析是智能客服、聊天机器人等自然语言对话应用的基础课题, 而对话语料与常规书面语料有较大差异, 存在大量的称谓、情感短语、省略、语序颠倒、冗余等复杂现象, 对句法和语义分析器的影响较大, 对话自动分析的准确率相对书面语料一直不高。其主要原因在于对多轮对话缺乏严整的形式化描写方式, 不利于后续的分析计算。因此, 本文在梳理国内外针对对话的标注体系和语料库的基础上, 提出了基于抽象语义表示的篇章级多轮对话标注体系。具体探讨了了篇章级别的语义结构标注方法, 给出了词语和概念关系的对齐方案, 针对称谓语和情感短语增加了相应的语义关系和概念, 调整了表示主观情感词语的论元结构, 并对对话中一些特殊现象进行了规定, 设计了人工标注平台, 为大规模的多轮对话语料库标注与计算研究奠定基础。