no code implementations • 18 Nov 2022 • Tino Werner
Neural networks are an indispensable model class for many complex learning tasks.
no code implementations • 10 May 2022 • Julian Wörmann, Daniel Bogdoll, Christian Brunner, Etienne Bührle, Han Chen, Evaristus Fuh Chuo, Kostadin Cvejoski, Ludger van Elst, Philip Gottschall, Stefan Griesche, Christian Hellert, Christian Hesels, Sebastian Houben, Tim Joseph, Niklas Keil, Johann Kelsch, Mert Keser, Hendrik Königshof, Erwin Kraft, Leonie Kreuser, Kevin Krone, Tobias Latka, Denny Mattern, Stefan Matthes, Franz Motzkus, Mohsin Munir, Moritz Nekolla, Adrian Paschke, Stefan Pilar von Pilchau, Maximilian Alexander Pintz, Tianming Qiu, Faraz Qureishi, Syed Tahseen Raza Rizvi, Jörg Reichardt, Laura von Rueden, Alexander Sagel, Diogo Sasdelli, Tobias Scholl, Gerhard Schunk, Gesina Schwalbe, Hao Shen, Youssef Shoeb, Hendrik Stapelbroek, Vera Stehr, Gurucharan Srinivas, Anh Tuan Tran, Abhishek Vivekanandan, Ya Wang, Florian Wasserrab, Tino Werner, Christian Wirth, Stefan Zwicklbauer
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models.
no code implementations • 10 Feb 2022 • Tino Werner
Since model selection depends on the loss function, i. e., predictor sets selected w. r. t.
no code implementations • 24 Sep 2019 • Tino Werner, Peter Ruckdeschel
The fact that certain variables relevant for a particular loss $\tilde L$ never get selected by $L_2-$Boosting is reflected by a respective singular part of $\nu^{(\tilde L)}$ w. r. t.
no code implementations • 6 Sep 2019 • Tino Werner
We discuss the difficulties when trying to optimize those criteria.