no code implementations • 28 Oct 2020 • Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, Sam McCandlish
The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains.
63 code implementations • NeurIPS 2020 • Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei
By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do.
Ranked #1 on Question Answering on CoQA (Overall metric)
1 code implementation • 8 May 2020 • Danny Hernandez, Tom B. Brown
Three factors drive the advance of AI: algorithmic innovation, data, and the amount of compute available for training.
2 code implementations • 23 Jan 2020 • Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei
We study empirical scaling laws for language model performance on the cross-entropy loss.
9 code implementations • 18 Sep 2019 • Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving
Most work on reward learning has used simulated environments, but complex information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks.
1 code implementation • 22 Sep 2018 • Tom B. Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, Ian Goodfellow
We introduce a two-player contest for evaluating the safety and robustness of machine learning systems, with a large prize pool.
no code implementations • ICML 2018 • Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B. Brown, Christopher Olah, Colin Raffel, Ian Goodfellow
Motivated by this, we study the distribution of singular values of the Jacobian of the generator in Generative Adversarial Networks (GANs).
10 code implementations • 27 Dec 2017 • Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, Justin Gilmer
We present a method to create universal, robust, targeted adversarial image patches in the real world.
6 code implementations • NeurIPS 2017 • Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, Dario Amodei
For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems.