Search Results for author: Tom Gibbs

Found 8 papers, 4 papers with code

The Structural Safety Generalization Problem

1 code implementation13 Apr 2025 Julius Broomfield, Tom Gibbs, Ethan Kosak-Hine, George Ingebretsen, Tia Nasir, Jason Zhang, Reihaneh Iranmanesh, Sara Pieri, Reihaneh Rabbany, Kellin Pelrine

We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment.

Red Teaming

MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow

no code implementations18 Jan 2025 Xiaoli Yan, Nathaniel Hudson, Hyun Park, Daniel Grzenda, J. Gregory Pauloski, Marcus Schwarting, Haochen Pan, Hassan Harb, Samuel Foreman, Chris Knight, Tom Gibbs, Kyle Chard, Santanu Chaudhuri, Emad Tajkhorshid, Ian Foster, Mohamad Moosavi, Logan Ward, E. A. Huerta

We present MOFA, an open-source generative AI (GenAI) plus simulation workflow for high-throughput generation of metal-organic frameworks (MOFs) on large-scale high-performance computing (HPC) systems.

Deep Learning for Multi-Messenger Astrophysics: A Gateway for Discovery in the Big Data Era

no code implementations1 Feb 2019 Gabrielle Allen, Igor Andreoni, Etienne Bachelet, G. Bruce Berriman, Federica B. Bianco, Rahul Biswas, Matias Carrasco Kind, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Anushri Gupta, Roland Haas, E. A. Huerta, Elise Jennings, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Kenton McHenry, J. M. Miller, M. S. Neubauer, Steve Oberlin, Alexander R. Olivas Jr, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, JinJun Xiong, Zhizhen Zhao

We discuss key aspects to realize this endeavor, namely (i) the design and exploitation of scalable and computationally efficient AI algorithms for Multi-Messenger Astrophysics; (ii) cyberinfrastructure requirements to numerically simulate astrophysical sources, and to process and interpret Multi-Messenger Astrophysics data; (iii) management of gravitational wave detections and triggers to enable electromagnetic and astro-particle follow-ups; (iv) a vision to harness future developments of machine and deep learning and cyberinfrastructure resources to cope with the scale of discovery in the Big Data Era; (v) and the need to build a community that brings domain experts together with data scientists on equal footing to maximize and accelerate discovery in the nascent field of Multi-Messenger Astrophysics.

Astronomy Management +1

Cannot find the paper you are looking for? You can Submit a new open access paper.