1 code implementation • 13 Apr 2025 • Julius Broomfield, Tom Gibbs, Ethan Kosak-Hine, George Ingebretsen, Tia Nasir, Jason Zhang, Reihaneh Iranmanesh, Sara Pieri, Reihaneh Rabbany, Kellin Pelrine
We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment.
no code implementations • 18 Jan 2025 • Xiaoli Yan, Nathaniel Hudson, Hyun Park, Daniel Grzenda, J. Gregory Pauloski, Marcus Schwarting, Haochen Pan, Hassan Harb, Samuel Foreman, Chris Knight, Tom Gibbs, Kyle Chard, Santanu Chaudhuri, Emad Tajkhorshid, Ian Foster, Mohamad Moosavi, Logan Ward, E. A. Huerta
We present MOFA, an open-source generative AI (GenAI) plus simulation workflow for high-throughput generation of metal-organic frameworks (MOFs) on large-scale high-performance computing (HPC) systems.
1 code implementation • 17 Oct 2024 • Maximilian Puelma Touzel, Sneheel Sarangi, Austin Welch, Gayatri Krishnakumar, Dan Zhao, Zachary Yang, Hao Yu, Ethan Kosak-Hine, Tom Gibbs, Andreea Musulan, Camille Thibault, Busra Tugce Gurbuz, Reihaneh Rabbany, Jean-François Godbout, Kellin Pelrine
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes.
no code implementations • 29 Aug 2024 • Tom Gibbs, Ethan Kosak-Hine, George Ingebretsen, Jason Zhang, Julius Broomfield, Sara Pieri, Reihaneh Iranmanesh, Reihaneh Rabbany, Kellin Pelrine
Large language models (LLMs) are improving at an exceptional rate.
1 code implementation • 6 Apr 2021 • Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia Severini, Florian Matthes, Burkhard Rost
Simultaneously, the transformer model, especially its combination with transfer learning, has been proven to be a powerful technique for natural language processing tasks.
1 code implementation • 13 Jul 2020 • Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, Burkhard Rost
Here, we trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef and BFD containing up to 393 billion amino acids.
Ranked #1 on
Protein Secondary Structure Prediction
on CASP12
Dimensionality Reduction
Protein Secondary Structure Prediction
no code implementations • 26 Nov 2019 • E. A. Huerta, Gabrielle Allen, Igor Andreoni, Javier M. Antelis, Etienne Bachelet, Bruce Berriman, Federica Bianco, Rahul Biswas, Matias Carrasco, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Maya Fishbach, Francisco Förster, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Robert Gruendl, Anushri Gupta, Roland Haas, Sarah Habib, Elise Jennings, Margaret W. G. Johnson, Erik Katsavounidis, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Zsuzsa Marka, Kenton McHenry, Jonah Miller, Claudia Moreno, Mark Neubauer, Steve Oberlin, Alexander R. Olivas, Donald Petravick, Adam Rebei, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard F. Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Leo Singer, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, JinJun Xiong, Zhizhen Zhao
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos.
no code implementations • 1 Feb 2019 • Gabrielle Allen, Igor Andreoni, Etienne Bachelet, G. Bruce Berriman, Federica B. Bianco, Rahul Biswas, Matias Carrasco Kind, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Anushri Gupta, Roland Haas, E. A. Huerta, Elise Jennings, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Kenton McHenry, J. M. Miller, M. S. Neubauer, Steve Oberlin, Alexander R. Olivas Jr, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, JinJun Xiong, Zhizhen Zhao
We discuss key aspects to realize this endeavor, namely (i) the design and exploitation of scalable and computationally efficient AI algorithms for Multi-Messenger Astrophysics; (ii) cyberinfrastructure requirements to numerically simulate astrophysical sources, and to process and interpret Multi-Messenger Astrophysics data; (iii) management of gravitational wave detections and triggers to enable electromagnetic and astro-particle follow-ups; (iv) a vision to harness future developments of machine and deep learning and cyberinfrastructure resources to cope with the scale of discovery in the Big Data Era; (v) and the need to build a community that brings domain experts together with data scientists on equal footing to maximize and accelerate discovery in the nascent field of Multi-Messenger Astrophysics.