no code implementations • 6 Apr 2022 • Lisandro A. Jimenez-Roa, Tom Heskes, Tiedo Tinga, Marielle Stoelinga
Fault tree analysis is a well-known technique in reliability engineering and risk assessment, which supports decision-making processes and the management of complex systems.
1 code implementation • 22 Feb 2022 • Laurens Sluijterman, Eric Cator, Tom Heskes
With the rise of the popularity and usage of neural networks, trustworthy uncertainty estimation is becoming increasingly essential.
1 code implementation • 25 Nov 2021 • Zhuoran Liu, Zhengyu Zhao, Alex Kolmus, Tijn Berns, Twan van Laarhoven, Tom Heskes, Martha Larson
Recent work has shown that imperceptible perturbations can be applied to craft unlearnable examples (ULEs), i. e. images whose content cannot be used to improve a classifier during training.
1 code implementation • 1 Nov 2021 • Alex Kolmus, Grégory Baltus, Justin Janquart, Twan van Laarhoven, Sarah Caudill, Tom Heskes
Fast, highly accurate, and reliable inference of the sky origin of gravitational waves would enable real-time multi-messenger astronomy.
no code implementations • 7 Jun 2021 • Laurens Sluijterman, Eric Cator, Tom Heskes
We demonstrate through practical examples that these effects can result in favoring a method, based on the predictive uncertainty, that has undesirable behaviour of the confidence intervals.
no code implementations • 10 Feb 2021 • Jelle Piepenbrock, Tom Heskes, Mikoláš Janota, Josef Urban
On these tasks, 3SIL is shown to significantly outperform several established RL and imitation learning methods.
no code implementations • 24 Dec 2020 • Errol Zalmijn, Tom Heskes, Tom Claassen
Like natural complex systems such as the Earth's climate or a living cell, semiconductor lithography systems are characterized by nonlinear dynamics across more than a dozen orders of magnitude in space and time.
Time Series
Information Theory
Information Theory
Adaptation and Self-Organizing Systems
Physics and Society
no code implementations • 18 Dec 2020 • Ioan Gabriel Bucur, Tom Claassen, Tom Heskes
Unfortunately, searching for proper instruments in a many-dimensional set of candidates is a daunting task due to the intractable model space and the fact that we cannot directly test which of these candidates are valid, so most existing search methods either rely on overly stringent modeling assumptions or fail to capture the inherent model uncertainty in the selection process.
1 code implementation • 18 Dec 2020 • Ioan Gabriel Bucur, Tom Claassen, Tom Heskes
In this paper, we propose a Bayesian approach called BayesMR that is a generalization of the Mendelian randomization technique in which we allow for pleiotropic effects and, crucially, for the possibility of reverse causation.
1 code implementation • NeurIPS 2020 • Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, Tom Claassen
Shapley values underlie one of the most popular model-agnostic methods within explainable artificial intelligence.
1 code implementation • 3 Sep 2019 • Ioan Gabriel Bucur, Tom Claassen, Tom Heskes
Many of these computational methods are designed to infer individual regulatory relationships among genes from data on gene expression.
1 code implementation • 19 May 2019 • Sascha Caron, Tom Heskes, Sydney Otten, Bob Stienen
Constraining the parameters of physical models with $>5-10$ parameters is a widespread problem in fields like particle physics and astronomy.
1 code implementation • 18 Sep 2018 • Ioan Gabriel Bucur, Tom van Bussel, Tom Claassen, Tom Heskes
Gene regulatory networks play a crucial role in controlling an organism's biological processes, which is why there is significant interest in developing computational methods that are able to extract their structure from high-throughput genetic data.
1 code implementation • 12 Jun 2018 • Ruifei Cui, Ioan Gabriel Bucur, Perry Groot, Tom Heskes
We consider the problem of learning parameters of latent variable models from mixed (continuous and ordinal) data with missing values.
no code implementations • 24 May 2018 • Ridho Rahmadi, Perry Groot, Tom Heskes
In our previous study, we introduced stable specification search for cross-sectional data (S3C).
1 code implementation • 6 Apr 2017 • Ioan Gabriel Bucur, Tom Claassen, Tom Heskes
Causal effect estimation from observational data is an important and much studied research topic.
no code implementations • 24 Oct 2016 • Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Mayra Bergkamp, Joost Wissink, Jiri Obels, Karlijn Keizer, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel
In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN).
no code implementations • 16 Oct 2016 • Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Inge van Uden, Clara Sanchez, Geert Litjens, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel
The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks.
no code implementations • 22 May 2016 • Ridho Rahmadi, Perry Groot, Marieke HC van Rijn, Jan AJG van den Brand, Marianne Heins, Hans Knoop, Tom Heskes
The present work introduces a novel causal modeling algorithm for longitudinal data, that is robust for finite samples based on recent advances in stability selection using subsampling and selection algorithms.
no code implementations • 17 Apr 2016 • Arno Solin, Pasi Jylänki, Jaakko Kauramäki, Tom Heskes, Marcel A. J. van Gerven, Simo Särkkä
We apply the method to both simulated and empirical data, and demonstrate the efficiency and generality of our Bayesian source reconstruction approach which subsumes various classical approaches in the literature.
1 code implementation • 15 Apr 2016 • Harm Berntsen, Wouter Kuijper, Tom Heskes
We introduce a novel artificial neural network architecture that integrates robustness to adversarial input in the network structure.
1 code implementation • 9 Dec 2015 • Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, Tom Heskes
A buffer k-d tree is a k-d tree variant for massively-parallel nearest neighbor search.
no code implementations • 18 Jun 2015 • Ridho Rahmadi, Perry Groot, Marianne Heins, Hans Knoop, Tom Heskes
Structure search is performed over Structural Equation Models.
no code implementations • 6 Nov 2014 • Tom Claassen, Joris M. Mooij, Tom Heskes
The algorithm is an adaptation of the well-known FCI algorithm by (Spirtes et al., 2000) that is also sound and complete, but has worst case complexity exponential in $N$.
no code implementations • 16 Jan 2014 • Botond Cseke, Tom Heskes
We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below.
no code implementations • 26 Sep 2013 • Joris Mooij, Tom Heskes
We propose a method for learning cyclic causal models from a combination of observational and interventional equilibrium data.
no code implementations • 26 Sep 2013 • Tom Claassen, Joris Mooij, Tom Heskes
This paper shows that causal model discovery is not an NP-hard problem, in the sense that for sparse graphs bounded by node degree k the sound and complete causal model can be obtained in worst case order N^{2(k+2)} independence tests, even when latent variables and selection bias may be present.
no code implementations • 2 Jul 2013 • Evgeni Tsivtsivadze, Tom Heskes
We propose a novel sparse preference learning/ranking algorithm.
no code implementations • 17 May 2013 • Botond Cseke, Andrew Zammit Mangion, Tom Heskes, Guido Sanguinetti
Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines.
no code implementations • NeurIPS 2011 • Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf
We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise.
no code implementations • NeurIPS 2010 • Tom Claassen, Tom Heskes
We present the MCI-algorithm as the first method that can infer provably valid causal relations in the large sample limit from different experiments.
no code implementations • NeurIPS 2009 • Marcel V. Gerven, Botond Cseke, Robert Oostenveld, Tom Heskes
We introduce a novel multivariate Laplace (MVL) distribution as a sparsity promoting prior for Bayesian source localization that allows the specification of constraints between and within sources.
no code implementations • NeurIPS 2007 • José M. Hernández-Lobato, Tjeerd Dijkstra, Tom Heskes
We introduce a hierarchical Bayesian model for the discovery of putative regulators from gene expression data only.