Search Results for author: Tom Vercauteren

Found 118 papers, 64 papers with code

Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation

no code implementations28 May 2024 Dominic LaBella, Katherine Schumacher, Michael Mix, Kevin Leu, Shan McBurney-Lin, Pierre Nedelec, Javier Villanueva-Meyer, Jonathan Shapey, Tom Vercauteren, Kazumi Chia, Omar Al-Salihi, Justin Leu, Lia Halasz, Yury Velichko, Chunhao Wang, John Kirkpatrick, Scott Floyd, Zachary J. Reitman, Trey Mullikin, Ulas Bagci, Sean Sachdev, Jona A. Hattangadi-Gluth, Tyler Seibert, Nikdokht Farid, Connor Puett, Matthew W. Pease, Kevin Shiue, Syed Muhammad Anwar, Shahriar Faghani, Muhammad Ammar Haider, Pranav Warman, Jake Albrecht, András Jakab, Mana Moassefi, Verena Chung, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Christina Huang, Aaron Coley, Siddharth Ghanta, Alex Schneider, Conrad Sharp, Rachit Saluja, Florian Kofler, Philipp Lohmann, Phillipp Vollmuth, Louis Gagnon, Maruf Adewole, Hongwei Bran Li, Anahita Fathi Kazerooni, Nourel Hoda Tahon, Udunna Anazodo, Ahmed W. Moawad, Bjoern Menze, Marius George Linguraru, Mariam Aboian, Benedikt Wiestler, Ujjwal Baid, Gian-Marco Conte, Andreas M. T. Rauschecker, Ayman Nada, Aly H. Abayazeed, Raymond Huang, Maria Correia de Verdier, Jeffrey D. Rudie, Spyridon Bakas, Evan Calabrese

The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or post-operative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery.

Brain Tumor Segmentation Segmentation +1

An unsupervised learning-based shear wave tracking method for ultrasound elastography

no code implementations25 Apr 2024 Remi Delaunay, Yipeng Hu, Tom Vercauteren

Shear wave elastography involves applying a non-invasive acoustic radiation force to the tissue and imaging the induced deformation to infer its mechanical properties.

Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation

1 code implementation11 Mar 2024 Theodore Barfoot, Luis Garcia-Peraza-Herrera, Ben Glocker, Tom Vercauteren

Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset.

Image Segmentation Medical Image Segmentation +2

Transferring Relative Monocular Depth to Surgical Vision with Temporal Consistency

1 code implementation11 Mar 2024 Charlie Budd, Tom Vercauteren

We show temporal consistency significantly improves supervised training alone when transferring to the low-data regime of endoscopy, and outperforms the prevalent self-supervision technique for this task.

Large Model driven Radiology Report Generation with Clinical Quality Reinforcement Learning

no code implementations11 Mar 2024 Zijian Zhou, Miaojing Shi, Meng Wei, Oluwatosin Alabi, Zijie Yue, Tom Vercauteren

Finally, to better reflect the clinical significant and insignificant errors that radiologists would normally assign in the report, we introduce a novel clinical quality reinforcement learning strategy.

Decoder Language Modelling +2

Multitask Learning in Minimally Invasive Surgical Vision: A Review

no code implementations16 Jan 2024 Oluwatosin Alabi, Tom Vercauteren, Miaojing Shi

Recent advancements in machine learning and computer vision have led to successful applications in analyzing videos obtained from MIS with the promise of alleviating challenges in MIS videos.

Action Understanding

A 3D generative model of pathological multi-modal MR images and segmentations

1 code implementation8 Nov 2023 Virginia Fernandez, Walter Hugo Lopez Pinaya, Pedro Borges, Mark S. Graham, Tom Vercauteren, M. Jorge Cardoso

The proposed joint imaging-segmentation generative model is shown to generate high-fidelity synthetic images and associated segmentations, with the ability to combine pathologies.

Data Augmentation MRI segmentation +1

A Clinical Guideline Driven Automated Linear Feature Extraction for Vestibular Schwannoma

no code implementations30 Oct 2023 Navodini Wijethilake, Steve Connor, Anna Oviedova, Rebecca Burger, Tom Vercauteren, Jonathan Shapey

We propose a novel algorithm to choose and extract the most appropriate maximum linear measurement from the segmented regions based on the size of the extrameatal portion of the tumour.

Decision Making

Long-term Dependency for 3D Reconstruction of Freehand Ultrasound Without External Tracker

1 code implementation16 Oct 2023 Qi Li, Ziyi Shen, Qian Li, Dean C. Barratt, Thomas Dowrick, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu

Significance: The proposed new methodology with publicly available volunteer data and code for parametersing the long-term dependency, experimentally shown to be valid sources of performance improvement, which could potentially lead to better model development and practical optimisation of the reconstruction application.

3D Reconstruction

UPL-SFDA: Uncertainty-aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation

1 code implementation19 Sep 2023 Jianghao Wu, Guotai Wang, Ran Gu, Tao Lu, Yinan Chen, Wentao Zhu, Tom Vercauteren, Sébastien Ourselin, Shaoting Zhang

The different predictions in these duplicated heads are used to obtain pseudo labels for unlabeled target-domain images and their uncertainty to identify reliable pseudo labels.

Brain Segmentation Image Segmentation +5

DEEPBEAS3D: Deep Learning and B-Spline Explicit Active Surfaces

no code implementations5 Sep 2023 Helena Williams, João Pedrosa, Muhammad Asad, Laura Cattani, Tom Vercauteren, Jan Deprest, Jan D'hooge

Experimental results show that: 1) the proposed framework gives the user explicit control of the surface contour; 2) the perceived workload calculated via the NASA-TLX index was reduced by 30% compared to VOCAL; and 3) it required 7 0% (170 seconds) less user time than VOCAL (p< 0. 00001)

Interactive Segmentation Segmentation

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

1 code implementation30 Aug 2023 Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger

For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.

Anatomy Mixed Reality

Privileged Anatomical and Protocol Discrimination in Trackerless 3D Ultrasound Reconstruction

1 code implementation20 Aug 2023 Qi Li, Ziyi Shen, Qian Li, Dean C. Barratt, Thomas Dowrick, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu

Three-dimensional (3D) freehand ultrasound (US) reconstruction without using any additional external tracking device has seen recent advances with deep neural networks (DNNs).

Anatomy

SegMatch: A semi-supervised learning method for surgical instrument segmentation

no code implementations9 Aug 2023 Meng Wei, Charlie Budd, Luis C. Garcia-Peraza-Herrera, Reuben Dorent, Miaojing Shi, Tom Vercauteren

Surgical instrument segmentation is recognised as a key enabler to provide advanced surgical assistance and improve computer assisted interventions.

Pseudo Label Segmentation +1

Deep Homography Prediction for Endoscopic Camera Motion Imitation Learning

1 code implementation24 Jul 2023 Martin Huber, Sebastien Ourselin, Christos Bergeles, Tom Vercauteren

In this work, we investigate laparoscopic camera motion automation through imitation learning from retrospective videos of laparoscopic interventions.

Image Registration Imitation Learning

Deep Reinforcement Learning Based System for Intraoperative Hyperspectral Video Autofocusing

no code implementations21 Jul 2023 Charlie Budd, Jianrong Qiu, Oscar MacCormac, Martin Huber, Christopher Mower, Mirek Janatka, Théo Trotouin, Jonathan Shapey, Mads S. Bergholt, Tom Vercauteren

In addition, we performed a blinded usability trial by having two neurosurgeons compare the system with different autofocus policies, and found our novel approach to be the most favourable, making our system a desirable addition for intraoperative HSI.

reinforcement-learning

Learning-based sound speed estimation and aberration correction in linear-array photoacoustic imaging

1 code implementation19 Jun 2023 Mengjie Shi, Tom Vercauteren, Wenfeng Xia

This framework achieved a root mean square error of 10. 2 m/s and 15. 2 m/s for SoS estimation on digital and physical phantoms, respectively and structural similarity index measures of up to 0. 86 for PA reconstructions as compared to the conventional approach of 0. 69.

Image Reconstruction SSIM +1

LoViT: Long Video Transformer for Surgical Phase Recognition

1 code implementation15 May 2023 Yang Liu, Maxence Boels, Luis C. Garcia-Peraza-Herrera, Tom Vercauteren, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin

Our results demonstrate the effectiveness of our approach in achieving state-of-the-art performance of surgical phase recognition on two datasets of different surgical procedures and temporal sequencing characteristics whilst introducing mechanisms that cope with long videos.

Online surgical phase recognition

Adaptive Multi-scale Online Likelihood Network for AI-assisted Interactive Segmentation

1 code implementation23 Mar 2023 Muhammad Asad, Helena Williams, Indrajeet Mandal, Sarim Ather, Jan Deprest, Jan D'hooge, Tom Vercauteren

In this work, we propose an adaptive multi-scale online likelihood network (MONet) that adaptively learns in a data-efficient online setting from both an initial automatic segmentation and user interactions providing corrections.

Interactive Segmentation Segmentation

VideoSum: A Python Library for Surgical Video Summarization

1 code implementation15 Feb 2023 Luis C. Garcia-Peraza-Herrera, Sebastien Ourselin, Tom Vercauteren

It is thus unsurprising that substantial research efforts are made to develop methods aiming at mitigating the scarcity of annotated SDS data.

Video Summarization

Biomedical image analysis competitions: The state of current participation practice

no code implementations16 Dec 2022 Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Patrick Godau, Veronika Cheplygina, Michal Kozubek, Sharib Ali, Anubha Gupta, Jan Kybic, Alison Noble, Carlos Ortiz de Solórzano, Samiksha Pachade, Caroline Petitjean, Daniel Sage, Donglai Wei, Elizabeth Wilden, Deepak Alapatt, Vincent Andrearczyk, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Vivek Singh Bawa, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Jinwook Choi, Olivier Commowick, Marie Daum, Adrien Depeursinge, Reuben Dorent, Jan Egger, Hannah Eichhorn, Sandy Engelhardt, Melanie Ganz, Gabriel Girard, Lasse Hansen, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Hyunjeong Kim, Bennett Landman, Hongwei Bran Li, Jianning Li, Jun Ma, Anne Martel, Carlos Martín-Isla, Bjoern Menze, Chinedu Innocent Nwoye, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Carole Sudre, Kimberlin Van Wijnen, Armine Vardazaryan, Tom Vercauteren, Martin Wagner, Chuanbo Wang, Moi Hoon Yap, Zeyun Yu, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Rina Bao, Chanyeol Choi, Andrew Cohen, Oleh Dzyubachyk, Adrian Galdran, Tianyuan Gan, Tianqi Guo, Pradyumna Gupta, Mahmood Haithami, Edward Ho, Ikbeom Jang, Zhili Li, Zhengbo Luo, Filip Lux, Sokratis Makrogiannis, Dominik Müller, Young-tack Oh, Subeen Pang, Constantin Pape, Gorkem Polat, Charlotte Rosalie Reed, Kanghyun Ryu, Tim Scherr, Vajira Thambawita, Haoyu Wang, Xinliang Wang, Kele Xu, Hung Yeh, Doyeob Yeo, Yixuan Yuan, Yan Zeng, Xin Zhao, Julian Abbing, Jannes Adam, Nagesh Adluru, Niklas Agethen, Salman Ahmed, Yasmina Al Khalil, Mireia Alenyà, Esa Alhoniemi, Chengyang An, Talha Anwar, Tewodros Weldebirhan Arega, Netanell Avisdris, Dogu Baran Aydogan, Yingbin Bai, Maria Baldeon Calisto, Berke Doga Basaran, Marcel Beetz, Cheng Bian, Hao Bian, Kevin Blansit, Louise Bloch, Robert Bohnsack, Sara Bosticardo, Jack Breen, Mikael Brudfors, Raphael Brüngel, Mariano Cabezas, Alberto Cacciola, Zhiwei Chen, Yucong Chen, Daniel Tianming Chen, Minjeong Cho, Min-Kook Choi, Chuantao Xie Chuantao Xie, Dana Cobzas, Julien Cohen-Adad, Jorge Corral Acero, Sujit Kumar Das, Marcela de Oliveira, Hanqiu Deng, Guiming Dong, Lars Doorenbos, Cory Efird, Sergio Escalera, Di Fan, Mehdi Fatan Serj, Alexandre Fenneteau, Lucas Fidon, Patryk Filipiak, René Finzel, Nuno R. Freitas, Christoph M. Friedrich, Mitchell Fulton, Finn Gaida, Francesco Galati, Christoforos Galazis, Chang Hee Gan, Zheyao Gao, Shengbo Gao, Matej Gazda, Beerend Gerats, Neil Getty, Adam Gibicar, Ryan Gifford, Sajan Gohil, Maria Grammatikopoulou, Daniel Grzech, Orhun Güley, Timo Günnemann, Chunxu Guo, Sylvain Guy, Heonjin Ha, Luyi Han, Il Song Han, Ali Hatamizadeh, Tian He, Jimin Heo, Sebastian Hitziger, SeulGi Hong, Seungbum Hong, Rian Huang, Ziyan Huang, Markus Huellebrand, Stephan Huschauer, Mustaffa Hussain, Tomoo Inubushi, Ece Isik Polat, Mojtaba Jafaritadi, SeongHun Jeong, Bailiang Jian, Yuanhong Jiang, Zhifan Jiang, Yueming Jin, Smriti Joshi, Abdolrahim Kadkhodamohammadi, Reda Abdellah Kamraoui, Inha Kang, Junghwa Kang, Davood Karimi, April Khademi, Muhammad Irfan Khan, Suleiman A. Khan, Rishab Khantwal, Kwang-Ju Kim, Timothy Kline, Satoshi Kondo, Elina Kontio, Adrian Krenzer, Artem Kroviakov, Hugo Kuijf, Satyadwyoom Kumar, Francesco La Rosa, Abhi Lad, Doohee Lee, Minho Lee, Chiara Lena, Hao Li, Ling Li, Xingyu Li, Fuyuan Liao, Kuanlun Liao, Arlindo Limede Oliveira, Chaonan Lin, Shan Lin, Akis Linardos, Marius George Linguraru, Han Liu, Tao Liu, Di Liu, Yanling Liu, João Lourenço-Silva, Jingpei Lu, Jiangshan Lu, Imanol Luengo, Christina B. Lund, Huan Minh Luu, Yi Lv, Uzay Macar, Leon Maechler, Sina Mansour L., Kenji Marshall, Moona Mazher, Richard McKinley, Alfonso Medela, Felix Meissen, Mingyuan Meng, Dylan Miller, Seyed Hossein Mirjahanmardi, Arnab Mishra, Samir Mitha, Hassan Mohy-ud-Din, Tony Chi Wing Mok, Gowtham Krishnan Murugesan, Enamundram Naga Karthik, Sahil Nalawade, Jakub Nalepa, Mohamed Naser, Ramin Nateghi, Hammad Naveed, Quang-Minh Nguyen, Cuong Nguyen Quoc, Brennan Nichyporuk, Bruno Oliveira, David Owen, Jimut Bahan Pal, Junwen Pan, Wentao Pan, Winnie Pang, Bogyu Park, Vivek Pawar, Kamlesh Pawar, Michael Peven, Lena Philipp, Tomasz Pieciak, Szymon Plotka, Marcel Plutat, Fattaneh Pourakpour, Domen Preložnik, Kumaradevan Punithakumar, Abdul Qayyum, Sandro Queirós, Arman Rahmim, Salar Razavi, Jintao Ren, Mina Rezaei, Jonathan Adam Rico, ZunHyan Rieu, Markus Rink, Johannes Roth, Yusely Ruiz-Gonzalez, Numan Saeed, Anindo Saha, Mostafa Salem, Ricardo Sanchez-Matilla, Kurt Schilling, Wei Shao, Zhiqiang Shen, Ruize Shi, Pengcheng Shi, Daniel Sobotka, Théodore Soulier, Bella Specktor Fadida, Danail Stoyanov, Timothy Sum Hon Mun, Xiaowu Sun, Rong Tao, Franz Thaler, Antoine Théberge, Felix Thielke, Helena Torres, Kareem A. Wahid, Jiacheng Wang, Yifei Wang, Wei Wang, Xiong Wang, Jianhui Wen, Ning Wen, Marek Wodzinski, Ye Wu, Fangfang Xia, Tianqi Xiang, Chen Xiaofei, Lizhan Xu, Tingting Xue, Yuxuan Yang, Lin Yang, Kai Yao, Huifeng Yao, Amirsaeed Yazdani, Michael Yip, Hwanseung Yoo, Fereshteh Yousefirizi, Shunkai Yu, Lei Yu, Jonathan Zamora, Ramy Ashraf Zeineldin, Dewen Zeng, Jianpeng Zhang, Bokai Zhang, Jiapeng Zhang, Fan Zhang, Huahong Zhang, Zhongchen Zhao, Zixuan Zhao, Jiachen Zhao, Can Zhao, Qingshuo Zheng, Yuheng Zhi, Ziqi Zhou, Baosheng Zou, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Of these, 84% were based on standard architectures.

Benchmarking

Trackerless freehand ultrasound with sequence modelling and auxiliary transformation over past and future frames

1 code implementation9 Nov 2022 Qi Li, Ziyi Shen, Qian Li, Dean C Barratt, Thomas Dowrick, Matthew J Clarkson, Tom Vercauteren, Yipeng Hu

Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs.

Multi-Task Learning

ROS-PyBullet Interface: A Framework for Reliable Contact Simulation and Human-Robot Interaction

no code implementations13 Oct 2022 Christopher E. Mower, Theodoros Stouraitis, João Moura, Christian Rauch, Lei Yan, Nazanin Zamani Behabadi, Michael Gienger, Tom Vercauteren, Christos Bergeles, Sethu Vijayakumar

However, there is a lack of software connecting reliable contact simulation with the larger robotics ecosystem (i. e. ROS, Orocos), for a more seamless application of novel approaches, found in the literature, to existing robotic hardware.

Boundary Distance Loss for Intra-/Extra-meatal Segmentation of Vestibular Schwannoma

no code implementations9 Aug 2022 Navodini Wijethilake, Aaron Kujawa, Reuben Dorent, Muhammad Asad, Anna Oviedova, Tom Vercauteren, Jonathan Shapey

It can be separated into two regions, intrameatal and extrameatal respectively corresponding to being inside or outside the inner ear canal.

Management Segmentation +1

Driving Points Prediction For Abdominal Probabilistic Registration

1 code implementation5 Aug 2022 Samuel Joutard, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren, Marc Modat

Among the various registration methods proposed for this task, probabilistic displacement registration models estimate displacement distribution for a subset of points by comparing feature vectors of points from the two images.

Anatomy

FastGeodis: Fast Generalised Geodesic Distance Transform

1 code implementation26 Jul 2022 Muhammad Asad, Reuben Dorent, Tom Vercauteren

The FastGeodis package provides an efficient implementation for computing Geodesic and Euclidean distance transforms (or a mixture of both), targeting efficient utilisation of CPU and GPU hardware.

Interactive Segmentation Medical Image Segmentation

Cross-Modality Image Registration using a Training-Time Privileged Third Modality

1 code implementation26 Jul 2022 Qianye Yang, David Atkinson, Yunguan Fu, Tom Syer, Wen Yan, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Tom Vercauteren, Yipeng Hu

In this work, we consider the task of pairwise cross-modality image registration, which may benefit from exploiting additional images available only at training time from an additional modality that is different to those being registered.

Image Registration

Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with low-energy excitation light source

no code implementations9 Jul 2022 Mengjie Shi, Tom Vercauteren, Wenfeng Xia

However, PA signals generated with these light sources are readily degraded by noise due to the low optical fluence, leading to decreased signal-to-noise ratio (SNR) in PA images.

Denoising

Motion Correction and Volumetric Reconstruction for Fetal Functional Magnetic Resonance Imaging Data

1 code implementation11 Feb 2022 Daniel Sobotka, Michael Ebner, Ernst Schwartz, Karl-Heinz Nenning, Athena Taymourtash, Tom Vercauteren, Sebastien Ourselin, Gregor Kasprian, Daniela Prayer, Georg Langs, Roxane Licandro

Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI.

L2 Regularization Motion Estimation +2

ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation

2 code implementations12 Jan 2022 Muhammad Asad, Lucas Fidon, Tom Vercauteren

Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes.

Interactive Segmentation Segmentation

Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets

no code implementations15 Nov 2021 Mengjie Shi, Tianrui Zhao, Simeon J. West, Adrien E. Desjardins, Tom Vercauteren, Wenfeng Xia

Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate identification of critical tissue targets and invasive medical devices (such as metallic needles).

Partial supervision for the FeTA challenge 2021

2 code implementations3 Nov 2021 Lucas Fidon, Michael Aertsen, Suprosanna Shit, Philippe Demaerel, Sébastien Ourselin, Jan Deprest, Tom Vercauteren

Label-set loss functions allow to train deep neural networks with partially segmented images, i. e. segmentations in which some classes may be grouped into super-classes.

Brain Segmentation Image Segmentation +2

Interactive Segmentation via Deep Learning and B-Spline Explicit Active Surfaces

no code implementations25 Oct 2021 Helena Williams, João Pedrosa, Laura Cattani, Susanne Housmans, Tom Vercauteren, Jan Deprest, Jan D'hooge

The interactive element of the framework allows the user to precisely edit the contour in real-time, and by utilising BEAS it ensures the final contour is smooth and anatomically plausible.

Image Segmentation Interactive Segmentation +3

Homography-based Visual Servoing with Remote Center of Motion for Semi-autonomous Robotic Endoscope Manipulation

1 code implementation25 Oct 2021 Martin Huber, John Bason Mitchell, Ross Henry, Sébastien Ourselin, Tom Vercauteren, Christos Bergeles

Our approach allows a surgeon to build a graph of desired views, from which, once built, views can be manually selected and automatically servoed to irrespective of robot-patient frame transformation changes.

Image Registration

Deep Homography Estimation in Dynamic Surgical Scenes for Laparoscopic Camera Motion Extraction

2 code implementations30 Sep 2021 Martin Huber, Sébastien Ourselin, Christos Bergeles, Tom Vercauteren

We perform an extensive evaluation of state-of-the-art (SOTA) Deep Neural Networks (DNNs) across multiple compute regimes, finding our method transfers from our camera motion free da Vinci surgery dataset to videos of laparoscopic interventions, outperforming classical homography estimation approaches in both, precision by 41%, and runtime on a CPU by 43%.

Homography Estimation Imitation Learning +1

Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation

1 code implementation1 Jul 2021 Reuben Dorent, Samuel Joutard, Jonathan Shapey, Aaron Kujawa, Marc Modat, Sebastien Ourselin, Tom Vercauteren

We introduce $\textit{InExtremIS}$, a weakly supervised 3D approach to train a deep image segmentation network using particularly weak train-time annotations: only 6 extreme clicks at the boundary of the objects of interest.

Image Segmentation Segmentation +2

Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

1 code implementation30 Apr 2021 Adrià Casamitjana, Marco Lorenzi, Sebastiano Ferraris, Loc Peter, Marc Modat, Allison Stevens, Bruce Fischl, Tom Vercauteren, Juan Eugenio Iglesias

The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images.

3D Reconstruction Bayesian Inference

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

2 code implementations25 Apr 2021 Xiangde Luo, Guotai Wang, Tao Song, Jingyang Zhang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang

To solve these problems, we propose a novel deep learning-based interactive segmentation method that not only has high efficiency due to only requiring clicks as user inputs but also generalizes well to a range of previously unseen objects.

Image Segmentation Interactive Segmentation +3

Zero-shot super-resolution with a physically-motivated downsampling kernel for endomicroscopy

no code implementations25 Mar 2021 Agnieszka Barbara Szczotka, Dzhoshkun Ismail Shakir, Matthew J. Clarkson, Stephen P. Pereira, Tom Vercauteren

To address the need for non-reference image quality improvement, we designed a novel zero-shot super-resolution (ZSSR) approach that relies only on the endomicroscopy data to be processed in a self-supervised manner without the need for ground-truth HR images.

Image Quality Assessment Super-Resolution

Scale factor point spread function matching: Beyond aliasing in image resampling

no code implementations16 Jan 2021 M. Jorge Cardoso, Marc Modat, Tom Vercauteren, Sebastien Ourselin

Imaging devices exploit the Nyquist-Shannon sampling theorem to avoid both aliasing and redundant oversampling by design.

Active Annotation of Informative Overlapping Frames in Video Mosaicking Applications

1 code implementation30 Dec 2020 Loic Peter, Marcel Tella-Amo, Dzhoshkun Ismail Shakir, Jan Deprest, Sebastien Ourselin, Juan Eugenio Iglesias, Tom Vercauteren

In addition to the efficient construction of a mosaic, our framework provides, as a by-product, ground truth landmark correspondences which can be used for evaluation or learning purposes.

Generalized Wasserstein Dice Score, Distributionally Robust Deep Learning, and Ranger for brain tumor segmentation: BraTS 2020 challenge

1 code implementation3 Nov 2020 Lucas Fidon, Sebastien Ourselin, Tom Vercauteren

We stuck to a generic and state-of-the-art 3D U-Net architecture and experimented with a non-standard per-sample loss function, the generalized Wasserstein Dice loss, a non-standard population loss function, corresponding to distributionally robust optimization, and a non-standard optimizer, Ranger.

Brain Tumor Segmentation Segmentation +1

High-throughput molecular imaging via deep learning enabled Raman spectroscopy

2 code implementations28 Sep 2020 Conor C. Horgan, Magnus Jensen, Anika Nagelkerke, Jean-Phillipe St-Pierre, Tom Vercauteren, Molly M. Stevens, Mads S. Bergholt

Here, we present a comprehensive framework for higher-throughput molecular imaging via deep learning enabled Raman spectroscopy, termed DeepeR, trained on a large dataset of hyperspectral Raman images, with over 1. 5 million spectra (400 hours of acquisition) in total.

Denoising Super-Resolution +2

CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation

3 code implementations22 Sep 2020 Ran Gu, Guotai Wang, Tao Song, Rui Huang, Michael Aertsen, Jan Deprest, Sébastien Ourselin, Tom Vercauteren, Shaoting Zhang

Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object.

Image Segmentation Lesion Segmentation +3

Longitudinal Image Registration with Temporal-order and Subject-specificity Discrimination

no code implementations29 Aug 2020 Qianye Yang, Yunguan Fu, Francesco Giganti, Nooshin Ghavami, Qingchao Chen, J. Alison Noble, Tom Vercauteren, Dean Barratt, Yipeng Hu

Morphological analysis of longitudinal MR images plays a key role in monitoring disease progression for prostate cancer patients, who are placed under an active surveillance program.

Image Registration Morphological Analysis +1

Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices

1 code implementation2 Jul 2020 Guotai Wang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang

Experimental results show that: (1) our proposed CNN obtains uncertainty estimation in real time which correlates well with mis-segmentations, (2) the proposed interactive level set is effective and efficient for refinement, (3) UGIR obtains accurate refinement results with around 30% improvement of efficiency by using uncertainty to guide user interactions.

Brain Segmentation Segmentation

Learning from Irregularly Sampled Data for Endomicroscopy Super-resolution: A Comparative Study of Sparse and Dense Approaches

no code implementations29 Nov 2019 Agnieszka Barbara Szczotka, Dzhoshkun Ismail Shakir, DanieleRavi, Matthew J. Clarkson, Stephen P. Pereira, Tom Vercauteren

The main contributions of our study are a comparison of sparse and dense approach in pCLE image reconstruction, implementing trainable generalised NW kernel regression, and adaptation of synthetic data for training pCLE SR.

Image Quality Assessment Image Reconstruction +2

CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions

no code implementations20 Oct 2019 Tom Vercauteren, Mathias Unberath, Nicolas Padoy, Nassir Navab

Data-driven computational approaches have evolved to enable extraction of information from medical images with a reliability, accuracy and speed which is already transforming their interpretation and exploitation in clinical practice.

Decision Making

SGD with Hardness Weighted Sampling for Distributionally Robust Deep Learning

no code implementations25 Sep 2019 Lucas Fidon, Sebastien Ourselin, Tom Vercauteren

Similar to a hard example mining strategy in essence and in practice, the proposed algorithm is straightforward to implement and computationally as efficient as SGD-based optimizers used for deep learning.

Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning

no code implementations21 Aug 2019 Kerstin Kläser, Thomas Varsavsky, Pawel Markiewicz, Tom Vercauteren, David Atkinson, Kris Thielemans, Brian Hutton, M. Jorge Cardoso, Sebastien Ourselin

Quantitative results show that the network generates pCTs that seem less accurate when evaluating the Mean Absolute Error on the pCT (69. 68HU) compared to a baseline CNN (66. 25HU), but lead to significant improvement in the PET reconstruction - 115a. u.

Imitation Learning

Deep Sequential Mosaicking of Fetoscopic Videos

1 code implementation15 Jul 2019 Sophia Bano, Francisco Vasconcelos, Marcel Tella Amo, George Dwyer, Caspar Gruijthuijsen, Jan Deprest, Sebastien Ourselin, Emmanuel Vander Poorten, Tom Vercauteren, Danail Stoyanov

Mosaicking can align multiple overlapping images to generate an image with increased FoV, however, existing techniques apply poorly to fetoscopy due to the low visual quality, texture paucity, and hence fail in longer sequences due to the drift accumulated over time.

Data Augmentation

Learning joint lesion and tissue segmentation from task-specific hetero-modal datasets

no code implementations7 Jul 2019 Reuben Dorent, Wenqi Li, Jinendra Ekanayake, Sebastien Ourselin, Tom Vercauteren

Developing a DNN for such joint task is currently hampered by the fact that annotated datasets typically address only one specific task and rely on a task-specific hetero-modal imaging protocol.

Lesion Segmentation Segmentation

Conditional Segmentation in Lieu of Image Registration

no code implementations30 Jun 2019 Yipeng Hu, Eli Gibson, Dean C. Barratt, Mark Emberton, J. Alison Noble, Tom Vercauteren

Classical pairwise image registration methods search for a spatial transformation that optimises a numerical measure that indicates how well a pair of moving and fixed images are aligned.

Image Registration Image Segmentation +2

Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss

no code implementations10 Jun 2019 Guotai Wang, Jonathan Shapey, Wenqi Li, Reuben Dorent, Alex Demitriadis, Sotirios Bisdas, Ian Paddick, Robert Bradford, Sebastien Ourselin, Tom Vercauteren

Automatic segmentation of vestibular schwannoma (VS) tumors from magnetic resonance imaging (MRI) would facilitate efficient and accurate volume measurement to guide patient management and improve clinical workflow.

Management Segmentation +1

Medical Imaging with Deep Learning: MIDL 2019 -- Extended Abstract Track

no code implementations21 May 2019 M. Jorge Cardoso, Aasa Feragen, Ben Glocker, Ender Konukoglu, Ipek Oguz, Gozde Unal, Tom Vercauteren

This compendium gathers all the accepted extended abstracts from the Second International Conference on Medical Imaging with Deep Learning (MIDL 2019), held in London, UK, 8-10 July 2019.

BIG-bench Machine Learning

Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy

no code implementations21 Jan 2019 Daniele Ravì, Agnieszka Barbara Szczotka, Stephen P. Pereira, Tom Vercauteren

Our framework can exploit HR images, regardless of the domain where they are coming from, to transfer the quality of the HR images to the initial LR images.

Image Quality Assessment Super-Resolution

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

1 code implementation5 Nov 2018 Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze

This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.

Brain Tumor Segmentation Survival Prediction +1

Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

no code implementations18 Oct 2018 Guotai Wang, Wenqi Li, Sebastien Ourselin, Tom Vercauteren

Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors.

Brain Tumor Segmentation Data Augmentation +3

Image computing for fibre-bundle endomicroscopy: A review

no code implementations3 Sep 2018 Antonios Perperidis, Kevin Dhaliwal, Stephen McLaughlin, Tom Vercauteren

Endomicroscopy is an emerging imaging modality, that facilitates the acquisition of in vivo, in situ optical biopsies, assisting diagnostic and potentially therapeutic interventions.

Image Reconstruction

Weakly-Supervised Convolutional Neural Networks for Multimodal Image Registration

no code implementations9 Jul 2018 Yipeng Hu, Marc Modat, Eli Gibson, Wenqi Li, Nooshin Ghavami, Ester Bonmati, Guotai Wang, Steven Bandula, Caroline M. Moore, Mark Emberton, Sébastien Ourselin, J. Alison Noble, Dean C. Barratt, Tom Vercauteren

A median target registration error of 3. 6 mm on landmark centroids and a median Dice of 0. 87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.

Image Registration

Adversarial Deformation Regularization for Training Image Registration Neural Networks

1 code implementation27 May 2018 Yipeng Hu, Eli Gibson, Nooshin Ghavami, Ester Bonmati, Caroline M. Moore, Mark Emberton, Tom Vercauteren, J. Alison Noble, Dean C. Barratt

During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation.

Image Registration

Interpretable Fully Convolutional Classification of Intrapapillary Capillary Loops for Real-Time Detection of Early Squamous Neoplasia

no code implementations2 May 2018 Luis C. Garcia-Peraza-Herrera, Martin Everson, Wenqi Li, Inmanol Luengo, Lorenz Berger, Omer Ahmad, Laurence Lovat, Hsiu-Po Wang, Wen-Lun Wang, Rehan Haidry, Danail Stoyanov, Tom Vercauteren, Sebastien Ourselin

We present a new approach to visualise attention that aims to give some insights on those areas of the oesophageal tissue that lead a network to conclude that the images belong to a particular class and compare them with those visual features employed by clinicians to produce a clinical diagnosis.

General Classification

Retrieval and Registration of Long-Range Overlapping Frames for Scalable Mosaicking of In Vivo Fetoscopy

no code implementations28 Feb 2018 Loïc Peter, Marcel Tella-Amo, Dzhoshkun Ismail Shakir, George Attilakos, Ruwan Wimalasundera, Jan Deprest, Sébastien Ourselin, Tom Vercauteren

Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.

Retrieval

A Log-Euclidean and Total Variation based Variational Framework for Computational Sonography

no code implementations6 Feb 2018 Jyotirmoy Banerjee, Premal A. Patel, Fred Ushakov, Donald Peebles, Jan Deprest, Sebastien Ourselin, David Hawkes, Tom Vercauteren

We propose a spatial compounding technique and variational framework to improve 3D ultrasound image quality by compositing multiple ultrasound volumes acquired from different probe orientations.

Joint registration and synthesis using a probabilistic model for alignment of MRI and histological sections

no code implementations16 Jan 2018 Juan Eugenio Iglesias, Marc Modat, Loic Peter, Allison Stevens, Roberto Annunziata, Tom Vercauteren, Ed Lein, Bruce Fischl, Sebastien Ourselin

Here, we overcome this limitation with a probabilistic method that simultaneously solves for registration and synthesis directly on the target images, without any training data.

Bayesian Inference

Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network

no code implementations18 Dec 2017 Ester Bonmati, Yipeng Hu, Nikhil Sindhwani, Hans Peter Dietz, Jan D'hooge, Dean Barratt, Jan Deprest, Tom Vercauteren

Results show a median Dice similarity coefficient of 0. 90 with an interquartile range of 0. 08, with equivalent performance to the three operators (with a Williams' index of 1. 03), and outperforming a U-Net architecture without the need for batch normalisation.

Label-driven weakly-supervised learning for multimodal deformable image registration

1 code implementation5 Nov 2017 Yipeng Hu, Marc Modat, Eli Gibson, Nooshin Ghavami, Ester Bonmati, Caroline M. Moore, Mark Emberton, J. Alison Noble, Dean C. Barratt, Tom Vercauteren

Spatially aligning medical images from different modalities remains a challenging task, especially for intraoperative applications that require fast and robust algorithms.

Image Registration Weakly-supervised Learning

Interactive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning

no code implementations11 Oct 2017 Guotai Wang, Wenqi Li, Maria A. Zuluaga, Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel, Anna L. David, Jan Deprest, Sebastien Ourselin, Tom Vercauteren

Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.

Image Segmentation Interactive Segmentation +3

Refractive Structure-From-Motion Through a Flat Refractive Interface

no code implementations ICCV 2017 Francois Chadebecq, Francisco Vasconcelos, George Dwyer, Rene Lacher, Sebastien Ourselin, Tom Vercauteren, Danail Stoyanov

By explicitly considering a refractive interface, we develop a succinct derivation of the refractive fundamental matrix in the form of the generalised epipolar constraint for an axial camera.

Pose Estimation

NiftyNet: a deep-learning platform for medical imaging

10 code implementations11 Sep 2017 Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, Tom Vercauteren

NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications.

Data Augmentation Image Generation +4

Intraoperative Organ Motion Models with an Ensemble of Conditional Generative Adversarial Networks

no code implementations5 Sep 2017 Yipeng Hu, Eli Gibson, Tom Vercauteren, Hashim U. Ahmed, Mark Emberton, Caroline M. Moore, J. Alison Noble, Dean C. Barratt

In this paper, we describe how a patient-specific, ultrasound-probe-induced prostate motion model can be directly generated from a single preoperative MR image.

Specificity

Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks

7 code implementations1 Sep 2017 Guotai Wang, Wenqi Li, Sebastien Ourselin, Tom Vercauteren

A cascade of fully convolutional neural networks is proposed to segment multi-modal Magnetic Resonance (MR) images with brain tumor into background and three hierarchical regions: whole tumor, tumor core and enhancing tumor core.

Brain Tumor Segmentation Segmentation +1